ﻻ يوجد ملخص باللغة العربية
We prove the solvability of It^o stochastic equations with uniformly nondegenerate, bounded, measurable diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$. Actually, the powers of summability of the drift in $x$ and $t$ could be different. Our results seem to be new even if the diffusion is constant. The method of proving the solvability belongs to A.V. Skorokhod. Weak uniqueness of solutions is an open problem even if the diffusion is constant.
This paper is a natural continuation of [8], where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$. Here we st
This paper is a natural continuation of cite{Kr_20_2}, where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in $L_{d+1}(mathbb{R}^{d+1})$.
This paper is a natural continuation of cite{Kr_20_2} and cite{Kr_21_1} where strong Markov processes are constructed in time inhomogeneous setting with Borel measurable uniformly bounded and uniformly nondegenerate diffusion and drift in $L_{d+1}(ma
We consider It^o uniformly nondegenerate equations with time independent coefficients, the diffusion coefficient in $W^{1}_{d,loc}$, and the drift in $L_{d}$. We prove the unique strong solvability for any starting point and prove that as a function
In this paper we deal with the heat equation with drift in $L_{d+1}$. Basically, we prove that, if the free term is in $L_{q}$ with high enough $q$, then the equation is uniquely solvable in a rather unusual class of functions such that $partial_{t}u, D^{2}uin L_{p}$ with $p<d+1$ and $Duin L_{q}$.