ترغب بنشر مسار تعليمي؟ اضغط هنا

Decoupling Value and Policy for Generalization in Reinforcement Learning

141   0   0.0 ( 0 )
 نشر من قبل Roberta Raileanu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Standard deep reinforcement learning algorithms use a shared representation for the policy and value function, especially when training directly from images. However, we argue that more information is needed to accurately estimate the value function than to learn the optimal policy. Consequently, the use of a shared representation for the policy and value function can lead to overfitting. To alleviate this problem, we propose two approaches which are combined to create IDAAC: Invariant Decoupled Advantage Actor-Critic. First, IDAAC decouples the optimization of the policy and value function, using separate networks to model them. Second, it introduces an auxiliary loss which encourages the representation to be invariant to task-irrelevant properties of the environment. IDAAC shows good generalization to unseen environments, achieving a new state-of-the-art on the Procgen benchmark and outperforming popular methods on DeepMind Control tasks with distractors. Our implementation is available at https://github.com/rraileanu/idaac.

قيم البحث

اقرأ أيضاً

Multiagent reinforcement learning algorithms (MARL) have been demonstrated on complex tasks that require the coordination of a team of multiple agents to complete. Existing works have focused on sharing information between agents via centralized crit ics to stabilize learning or through communication to increase performance, but do not generally look at how information can be shared between agents to address the curse of dimensionality in MARL. We posit that a multiagent problem can be decomposed into a multi-task problem where each agent explores a subset of the state space instead of exploring the entire state space. This paper introduces a multiagent actor-critic algorithm and method for combining knowledge from homogeneous agents through distillation and value-matching that outperforms policy distillation alone and allows further learning in both discrete and continuous action spaces.
While recent progress has spawned very powerful machine learning systems, those agents remain extremely specialized and fail to transfer the knowledge they gain to similar yet unseen tasks. In this paper, we study a simple reinforcement learning prob lem and focus on learning policies that encode the proper invariances for generalization to different settings. We evaluate three potential methods for policy generalization: data augmentation, meta-learning and adversarial training. We find our data augmentation method to be effective, and study the potential of meta-learning and adversarial learning as alternative task-agnostic approaches.
Many reinforcement learning algorithms rely on value estimation. However, the most widely used algorithms -- namely temporal difference algorithms -- can diverge under both off-policy sampling and nonlinear function approximation. Many algorithms hav e been developed for off-policy value estimation which are sound under linear function approximation, based on the linear mean-squared projected Bellman error (PBE). Extending these methods to the non-linear case has been largely unsuccessful. Recently, several methods have been introduced that approximate a different objective, called the mean-squared Bellman error (BE), which naturally facilities nonlinear approximation. In this work, we build on these insights and introduce a new generalized PBE, that extends the linear PBE to the nonlinear setting. We show how this generalized objective unifies previous work, including previous theory, and obtain new bounds for the value error of the solutions of the generalized objective. We derive an easy-to-use, but sound, algorithm to minimize the generalized objective which is more stable across runs, is less sensitive to hyperparameters, and performs favorably across four control domains with neural network function approximation.
235 - Wenlong Mou , Zheng Wen , Xi Chen 2020
We study the optimal sample complexity in large-scale Reinforcement Learning (RL) problems with policy space generalization, i.e. the agent has a prior knowledge that the optimal policy lies in a known policy space. Existing results show that without a generalization model, the sample complexity of an RL algorithm will inevitably depend on the cardinalities of state space and action space, which are intractably large in many practical problems. To avoid such undesirable dependence on the state and action space sizes, this paper proposes a new notion of eluder dimension for the policy space, which characterizes the intrinsic complexity of policy learning in an arbitrary Markov Decision Process (MDP). Using a simulator oracle, we prove a near-optimal sample complexity upper bound that only depends linearly on the eluder dimension. We further prove a similar regret bound in deterministic systems without the simulator.
In reinforcement learning (RL), function approximation errors are known to easily lead to the Q-value overestimations, thus greatly reducing policy performance. This paper presents a distributional soft actor-critic (DSAC) algorithm, which is an off- policy RL method for continuous control setting, to improve the policy performance by mitigating Q-value overestimations. We first discover in theory that learning a distribution function of state-action returns can effectively mitigate Q-value overestimations because it is capable of adaptively adjusting the update stepsize of the Q-value function. Then, a distributional soft policy iteration (DSPI) framework is developed by embedding the return distribution function into maximum entropy RL. Finally, we present a deep off-policy actor-critic variant of DSPI, called DSAC, which directly learns a continuous return distribution by keeping the variance of the state-action returns within a reasonable range to address exploding and vanishing gradient problems. We evaluate DSAC on the suite of MuJoCo continuous control tasks, achieving the state-of-the-art performance.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا