ﻻ يوجد ملخص باللغة العربية
The next generation of Far-infrared and X-ray space observatories will require detector arrays with thousands of transition edge sensor (TES) pixel. It is extremely important to have a tool that is able to characterize all the pixels and that can give a clear picture of the performance of the devices. In particular, we refer to those aspects that can affect the global energy resolution of the array: logarithmic resistance sensitivity with respect to temperature and current ($alpha$ and $beta$ parameters, respectively), uniformity of the TESs and the correct understanding of the detector thermal model. Complex impedance measurement of a TES is the only technique that can give all this information at once, but it has been established only for a single pixel under DC bias. We have developed a complex impedance measurement method for TESs that are AC biased since we are using a MHz frequency domain multiplexing (FDM) system to readout an array. We perform a complete set of AC impedance measurements for different X-ray TES microcalorimeters based on superconducting TiAu bilayers with or without normal metal Au bar structures. We discuss the statistical analysis of the residual between impedance data and fitting model to determine the proper calorimeter thermal model for our detectors. Extracted parameters are used to improve our understanding of the differences and capabilities among the detectors and additionally the quality of the array. Moreover, we use the results to compare the calculated noise spectra with the measured data.
We present proof-of-operation for a new method of electron thermometry using microwave impedance of a hafnium micro-absorber. The new method leads to an ultimate THz-range detector suitable for microwave readout and frequency division multiplexing. T
The Mu2e electromagnetic calorimeter is made of two disks of un-doped parallelepiped CsI crystals readout by SiPM. There are 674 crystals in one disk and each crystal is readout by an array of two SiPM. The readout electronics is composed of two type
Reflection measurements give access to the complex impedance of a material on a wide frequency range. This is of interest to study the dynamical properties of various materials, for instance disordered superconductors. However reflection measurements
The Belle II experiment at the SuperKEKB collider at KEK, Tsukuba, Japan has successfully started taking data with the full detector in March 2019. Belle II is a luminosity frontier experiment of the new generation to search for physics beyond the St
We present a superconducting noise bolometer for terahertz radiation, which is suitable for large-format arrays. It is based on an antenna-coupled superconducting micro-bridge embedded in a high-quality factor superconducting resonator for a microwav