ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting noise bolometer with microwave bias and readout for array applications

83   0   0.0 ( 0 )
 نشر من قبل Artem Kuzmin Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a superconducting noise bolometer for terahertz radiation, which is suitable for large-format arrays. It is based on an antenna-coupled superconducting micro-bridge embedded in a high-quality factor superconducting resonator for a microwave bias and readout with frequency-division multiplexing in the GHz range. The micro-bridge is kept below its critical temperature and biased with a microwave current of slightly lower amplitude than the critical current of the micro-bridge. The response of the detector is the rate of superconducting fluctuations, which depends exponentially on the concentration of quasiparticles in the micro-bridge. Excess quasiparticles are generated by an incident THz signal. Since the quasiparticle lifetime increases exponentially at lower operation temperature, the noise equivalent power rapidly decreases. This approach allows for large arrays of noise bolometers operating above 1 K with sensitivity, limited by 300-K background noise. Moreover, the response of the bolometer always dominates the noise of the readout due to relatively large amplitude of the bias current. We performed a feasibility study on a proof-of-concept device with a ${1.0times 0.5 rm mu m^{2}}$ micro-bridge from a 9-nm thin Nb film on a sapphire substrate. Having a critical temperature of 5.8 K, it operates at 4.2 K and is biased at the frequency 5.6 GHz. For the quasioptical input at 0.65 THz, we measured the noise equivalent power ${approx 3times 10^{-12}rm W/sqrt Hz}$ , which is close to expectations for this particular device in the noise-response regime.



قيم البحث

اقرأ أيضاً

We demonstrate a 16-pixel array of radio-frequency superconducting nanowire single-photon detectors with an integrated and scalable frequency-division multiplexing architecture, reducing the required bias and readout lines to a single microwave feed line. The electrical behavior of the photon-sensitive nanowires, embedded in a resonant circuit, as well as the optical performance and timing jitter of the single detectors is discussed. Besides the single pixel measurements we also demonstrate the operation of the 16-pixel array with a temporal, spatial and photon-number resolution.
This paper presents an analytical model to quantify noise in a bolometer readout circuit. A frequency domain analysis of the noise model is presented which includes the effect of noise from the bias resistor, sensor resistor, voltage and current nois e of amplifier and cable capacitance. The analytical model is initially verified by using several standard SMD resistors as a sensor in the range of 0.1 - 100 Mohm and measuring the RMS noise of the bolometer readout circuit. Noise measurement on several indigenously developed neutron transmutation doped Ge temperature sensor has been carried out over a temperature range of 20 - 70 mK and the measured data is compared with the noise calculated using analytical model. The effect of different sensor resistances on the noise of bolometer readout circuit, in line with the analytical model and measured data, is presented in this paper.
Superconducting nanowires are widely used as sensitive single photon detectors with wide spectral coverage and high timing resolution. We describe a demonstration of an array of DC biased superconducting nanowire single photon detectors read out with a microwave multiplexing circuit. In this design, each individual nanowire is part of a resonant LC circuit where the inductance is dominated by the kinetic inductance of the nanowire. The circuit also contains two parallel plate capacitors, one of them is in parallel with the inductor and the other is coupled to a microwave transmission line which carries the signals to a cryogenic low noise amplifier. All of the nanowires are connected via resistors to a single DC bias line that enables the nanowires to be current biased close to their critical current. When a photon hits a nanowire it creates a normal hot spot which produces a voltage pulse across the LC circuit. This pulse rings down at the resonant frequency of the LC circuit over a time period that is fixed by the quality factor. We present measurements of an array of these devices and an evaluation of their performance in terms of frequency and time response.
We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to redu ce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of $^{130}$Te and other rare events. The CUORE detector consists of 988 TeO$_2$ bolometers operate d underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا