ترغب بنشر مسار تعليمي؟ اضغط هنا

Conceptual 12M: Pushing Web-Scale Image-Text Pre-Training To Recognize Long-Tail Visual Concepts

65   0   0.0 ( 0 )
 نشر من قبل Soravit Changpinyo
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The availability of large-scale image captioning and visual question answering datasets has contributed significantly to recent successes in vision-and-language pre-training. However, these datasets are often collected with overrestrictive requirements inherited from their original target tasks (e.g., image caption generation), which limit the resulting dataset scale and diversity. We take a step further in pushing the limits of vision-and-language pre-training data by relaxing the data collection pipeline used in Conceptual Captions 3M (CC3M) [Sharma et al. 2018] and introduce the Conceptual 12M (CC12M), a dataset with 12 million image-text pairs specifically meant to be used for vision-and-language pre-training. We perform an analysis of this dataset and benchmark its effectiveness against CC3M on multiple downstream tasks with an emphasis on long-tail visual recognition. Our results clearly illustrate the benefit of scaling up pre-training data for vision-and-language tasks, as indicated by the new state-of-the-art results on both the nocaps and Conceptual Captions benchmarks.



قيم البحث

اقرأ أيضاً

This paper presents a novel approach for automatically generating image descriptions: visual detectors, language models, and multimodal similarity models learnt directly from a dataset of image captions. We use multiple instance learning to train vis ual detectors for words that commonly occur in captions, including many different parts of speech such as nouns, verbs, and adjectives. The word detector outputs serve as conditional inputs to a maximum-entropy language model. The language model learns from a set of over 400,000 image descriptions to capture the statistics of word usage. We capture global semantics by re-ranking caption candidates using sentence-level features and a deep multimodal similarity model. Our system is state-of-the-art on the official Microsoft COCO benchmark, producing a BLEU-4 score of 29.1%. When human judges compare the system captions to ones written by other people on our held-out test set, the system captions have equal or better quality 34% of the time.
131 - Xiaowei Hu , Xi Yin , Kevin Lin 2020
It is highly desirable yet challenging to generate image captions that can describe novel objects which are unseen in caption-labeled training data, a capability that is evaluated in the novel object captioning challenge (nocaps). In this challenge, no additional image-caption training data, other thanCOCO Captions, is allowed for model training. Thus, conventional Vision-Language Pre-training (VLP) methods cannot be applied. This paper presents VIsual VOcabulary pretraining (VIVO) that performs pre-training in the absence of caption annotations. By breaking the dependency of paired image-caption training data in VLP, VIVO can leverage large amounts of paired image-tag data to learn a visual vocabulary. This is done by pre-training a multi-layer Transformer model that learns to align image-level tags with their corresponding image region features. To address the unordered nature of image tags, VIVO uses a Hungarian matching loss with masked tag prediction to conduct pre-training. We validate the effectiveness of VIVO by fine-tuning the pre-trained model for image captioning. In addition, we perform an analysis of the visual-text alignment inferred by our model. The results show that our model can not only generate fluent image captions that describe novel objects, but also identify the locations of these objects. Our single model has achieved new state-of-the-art results on nocaps and surpassed the human CIDEr score.
Multimodal pre-training has propelled great advancement in vision-and-language research. These large-scale pre-trained models, although successful, fatefully suffer from slow inference speed due to enormous computation cost mainly from cross-modal at tention in Transformer architecture. When applied to real-life applications, such latency and computation demand severely deter the practical use of pre-trained models. In this paper, we study Image-text retrieval (ITR), the most mature scenario of V+L application, which has been widely studied even prior to the emergence of recent pre-trained models. We propose a simple yet highly effective approach, LightningDOT that accelerates the inference time of ITR by thousands of times, without sacrificing accuracy. LightningDOT removes the time-consuming cross-modal attention by pre-training on three novel learning objectives, extracting feature indexes offline, and employing instant dot-product matching with further re-ranking, which significantly speeds up retrieval process. In fact, LightningDOT achieves new state of the art across multiple ITR benchmarks such as Flickr30k, COCO and Multi30K, outperforming existing pre-trained models that consume 1000x magnitude of computational hours. Code and pre-training checkpoints are available at https://github.com/intersun/LightningDOT.
Manipulating visual attributes of images through human-written text is a very challenging task. On the one hand, models have to learn the manipulation without the ground truth of the desired output. On the other hand, models have to deal with the inh erent ambiguity of natural language. Previous research usually requires either the user to describe all the characteristics of the desired image or to use richly-annotated image captioning datasets. In this work, we propose a novel unsupervised approach, based on image-to-image translation, that alters the attributes of a given image through a command-like sentence such as change the hair color to black. Contrarily to state-of-the-art approaches, our model does not require a human-annotated dataset nor a textual description of all the attributes of the desired image, but only those that have to be modified. Our proposed model disentangles the image content from the visual attributes, and it learns to modify the latter using the textual description, before generating a new image from the content and the modified attribute representation. Because text might be inherently ambiguous (blond hair may refer to different shadows of blond, e.g. golden, icy, sandy), our method generates multiple stochast
We study the pre-train + fine-tune strategy for data-to-text tasks. Our experiments indicate that text-to-text pre-training in the form of T5, enables simple, end-to-end transformer based models to outperform pipelined neural architectures tailored f or data-to-text generation, as well as alternative language model based pre-training techniques such as BERT and GPT-2. Importantly, T5 pre-training leads to better generalization, as evidenced by large improvements on out-of-domain test sets. We hope our work serves as a useful baseline for future research, as transfer learning becomes ever more prevalent for data-to-text tasks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا