ﻻ يوجد ملخص باللغة العربية
First principles density functional theory (DFT) simulations of antiferroelectric (AFE) PbZrO$_3$ and PbHfO$_3$ reveal a dynamical instability in the phonon spectra of their purported low temperature $Pbam$ ground states. This instability doubles the $c$-axis of $Pbam$ and condenses five new small amplitude phonon modes giving rise to an 80-atom $Pnam$ structure. Compared with $Pbam$, the stability of this structure is slightly enhanced and highly reproducible as demonstrated through using different DFT codes and different treatments of electronic exchange & correlation interactions. This suggests that $Pnam$ is a new candidate for the low temperature ground state of both materials. With this finding, we bring parity between the AFE archetypes and recent observations of a very similar AFE phase in doped or electrostatically engineered BiFeO$_3$.
The prototypical antiferroelectric PbZrO$_3$ has several unsettled questions, such as the nature of the antiferroelectric transition, possible intermediate phase and the microscopic origin of the Pbam ground state. Using first principles, we show tha
Density-functional calculations of lattice dynamics and high-resolution synchrotron powder diffraction uncover antiferroelectric distortion in the kagome francisite Cu$_3$Bi(SeO$_3$)$_2$O$_2$Cl below 115K. Its Br-containing analogue is stable in the
Low dimensional structures comprised of ferroelectric (FE) PbTiO$_3$ (PTO) and quantum paraelectric SrTiO$_3$ (STO) are hosts to complex polarization textures such as polar waves, flux-closure domains and polar skyrmion phases. Density functional the
We discover hidden Rashba fine structure in CH$_3$NH$_3$PbI$_3$ and demonstrate its quantum control by vibrational coherence through symmetry-selective vibronic (electron-phonon) coupling. Above a critical threshold of a single-cycle terahertz pump f
Optical cavities confine light on a small region in space which can result in a strong coupling of light with materials inside the cavity. This gives rise to new states where quantum fluctuations of light and matter can alter the properties of the ma