ﻻ يوجد ملخص باللغة العربية
Optical cavities confine light on a small region in space which can result in a strong coupling of light with materials inside the cavity. This gives rise to new states where quantum fluctuations of light and matter can alter the properties of the material altogether. Here we demonstrate, based on first principles calculations, that such light-matter coupling induces a change of the collective phase from quantum paraelectric to ferroelectric in the SrTiO$_3$ groundstate, which has thus far only been achieved in out-of-equilibrium strongly excited conditions[1, 2]. This is a light-matter-hybrid groundstate which can only exist because of the coupling to the vacuum fluctuations of light, a photo-groundstate. The phase transition is accompanied by changes in the crystal structure, showing that fundamental groundstate properties of materials can be controlled via strong light-matter coupling. Such a control of quantum states enables the tailoring of materials properties or even the design of novel materials purely by exposing them to confined light.
The effect of a variety of intrinsic defects and defect clusters in bulk and thin films of SrTiO$_3$ on ferroelectric polarization and switching mechanism is investigated by means of density-functional-theory (DFT) based calculations and the Berry ph
Low dimensional structures comprised of ferroelectric (FE) PbTiO$_3$ (PTO) and quantum paraelectric SrTiO$_3$ (STO) are hosts to complex polarization textures such as polar waves, flux-closure domains and polar skyrmion phases. Density functional the
The ferroelectric domain pattern within lithographically defined PbTiO3/SrTiO3 ferroelectric/dielectric heteroepitaxial superlattice nanostructures is strongly influenced by the edges of the structures. Synchrotron x-ray nanobeam diffraction reveals
We study a model SrTiO$_3$ interface in which conduction $t_{2g}$ electrons couple to the ferroelectric (FE) phonon mode. We treat the FE mode within a self-consistent phonon theory that captures its quantum critical behavior, and show that proximity
SrTiO$_3$ is an incipient ferroelectric on the verge of a polar instability, which is avoided at low temperatures by quantum fluctuations. Within this unusual quantum paraelectric phase, superconductivity persists despite extremely dilute carrier den