ﻻ يوجد ملخص باللغة العربية
Nutrition is a key determinant of long-term health, and social influence has long been theorized to be a key determinant of nutrition. It has been difficult to quantify the postulated role of social influence on nutrition using traditional methods such as surveys, due to the typically small scale and short duration of studies. To overcome these limitations, we leverage a novel source of data: logs of 38 million food purchases made over an 8-year period on the Ecole Polytechnique Federale de Lausanne (EPFL) university campus, linked to anonymized individuals via the smartcards used to make on-campus purchases. In a longitudinal observational study, we ask: How is a persons food choice affected by eating with someone else whose own food choice is healthy vs. unhealthy? To estimate causal effects from the passively observed log data, we control confounds in a matched quasi-experimental design: we identify focal users who at first do not have any regular eating partners but then start eating with a fixed partner regularly, and we match focal users into comparison pairs such that paired users are nearly identical with respect to covariates measured before acquiring the partner, where the two focal users new eating partners diverge in the healthiness of their respective food choice. A difference-in-differences analysis of the paired data yields clear evidence of social influence: focal users acquiring a healthy-eating partner change their habits significantly more toward healthy foods than focal users acquiring an unhealthy-eating partner. We further identify foods whose purchase frequency is impacted significantly by the eating partners healthiness of food choice. Beyond the main results, the work demonstrates the utility of passively sensed food purchase logs for deriving insights, with the potential of informing the design of public health interventions and food offerings.
Given a set of attributed subgraphs known to be from different classes, how can we discover their differences? There are many cases where collections of subgraphs may be contrasted against each other. For example, they may be assigned ground truth la
Human decision making underlies data generating process in multiple application areas, and models explaining and predicting choices made by individuals are in high demand. Discrete choice models are widely studied in economics and computational socia
Increasing evidence suggests that, similar to face-to-face communications, human emotions also spread in online social media. However, the mechanisms underlying this emotion contagion, for example, whether different feelings spread in unlikely ways o
Due to their essential role as places for socialization, third places - social places where people casually visit and communicate with friends and neighbors - have been studied by a wide range of fields including network science, sociology, geography
Device-to-device (D2D) communications is seen as a major technology to overcome the imminent wireless capacity crunch and to enable novel application services. In this paper, we propose a novel, social-aware approach for optimizing D2D communications