ترغب بنشر مسار تعليمي؟ اضغط هنا

NLO EW and QCD corrections to polarized ZZ production in the four-charged-lepton channel at the LHC

271   0   0.0 ( 0 )
 نشر من قبل Giovanni Pelliccioli
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Measuring the polarization of electroweak bosons at the LHC allows for important tests of the electroweak-symmetry-breaking mechanism that is realized in nature. Therefore, precise Standard Model predictions are needed for the production of polarized bosons in the presence of realistic kinematic selections. We formulate a method for the calculation of polarized cross-sections at NLO that relies on the pole approximation and the separation of polarized matrix elements at the amplitude level. In this framework, we compute NLO-accurate cross-sections for the production of two polarized Z bosons at the LHC, including for the first time NLO EW corrections and combining them with NLO QCD corrections and contributions from the gluon-induced process.



قيم البحث

اقرأ أيضاً

We present the first calculation of the full next-to-leading-order electroweak and QCD corrections for vector-boson scattering (VBS) into a pair of Z bosons at the LHC. We consider specifically the process ${rm ppto e^{+}e^{-}mu^{+}mu^{-}jj}+X$ at or ders $mathcal{O}(alpha^7)$ and $mathcal{O}(alpha_salpha^6)$ and take all off-shell and interference contributions into account. Owing to the presence of enhanced Sudakov logarithms, the electroweak corrections amount to $-16%$ of the leading-order electroweak fiducial cross section and induce significant shape distortions of differential distributions. The QCD corrections on the other hand are larger ($+24%$) than typical QCD corrections in VBS. This originates from considering the full computation including tri-boson contributions in a rather inclusive phase space. We also provide a leading-order analysis of all contributions to the cross section for ${rm pp to e^{+}e^{-}mu^{+}mu^{-}jj}+X$ in a realistic setup.
We consider QCD radiative corrections to the production of four charged leptons in hadron collisions. We present the computation of the next-to-leading order QCD corrections to the loop-induced gluon fusion contribution. Our predictions include, for the first time, also the quark-gluon partonic channels. The computed corrections, which are formally of ${cal O}(alpha_{rm s}^3)$, turn out to increase the loop-induced Born-level result by an amount ranging from 75% to 71% as $sqrt{s}$ ranges from 8 to 13 TeV. We combine our result with state-of-the-art NNLO corrections to the quark annihilation channel, and present updated predictions for fiducial cross sections and distributions for this process.
The production of WWZ at the LHC is an important process to test the quartic gauge couplings of the Standard Model as well as an important background for new physics searches. A good theoretical understanding at next-to-leading order (NLO) is therefo re valuable. In this paper, we present the calculation of the NLO electroweak (EW) correction to this channel with on-shell gauge bosons in the final state. It is then combined with the NLO QCD correction to get the most up-to-date prediction. We study the impact of these corrections on the total cross section and some distributions. The NLO EW correction is small for the total cross section but becomes important in the high energy regime for the gauge boson transverse momentum distributions.
212 - T. Binoth , T. Gleisberg , S. Karg 2009
A fully differential calculation of the next-to-leading order QCD corrections to the production of Z-boson pairs in association with a hard jet at the Tevatron and LHC is presented. This process is an important background for Higgs particle and new p hysics searches at hadron colliders. We find sizable corrections for cross sections and differential distributions, particularly at the LHC. Residual scale uncertainties are typically at the 10% level and can be further reduced by applying a veto against the emission of a second hard jet. Our results confirm that NLO corrections do not simply rescale LO predictions.
Accessing the polarization of weak bosons provides an important probe for the mechanism of electroweak symmetry breaking. Relying on the double-pole approximation and on the separation of polarizations at the amplitude level, we study WZ production a t the LHC, with both bosons in a definite polarization mode, including NLO QCD effects. We compare results obtained defining the polarization vectors in two different frames. Integrated and differential cross-sections in a realistic fiducial region are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا