ﻻ يوجد ملخص باللغة العربية
We study the approach to scaling in axion string networks in the radiation era, through measuring the root-mean-square velocity $v$ as well as the scaled mean string separation $x$. We find good evidence for a fixed point in the phase-space analysis in the variables $(x,v)$, providing a strong indication that standard scaling is taking place. We show that the approach to scaling can be well described by a two parameter velocity-one-scale (VOS) model, and show that the values of the parameters are insensitive to the initial state of the network. The string length has also been commonly expressed in terms of a dimensionless string length density $zeta$, proportional to the number of Hubble lengths of string per Hubble volume. In simulations with initial conditions far from the fixed point $zeta$ is still evolving after half a light-crossing time, which has been interpreted in the literature as a long-term logarithmic growth. We show that all our simulations, even those starting far from the fixed point, are accounted for by a VOS model with an asymptote of $zeta_*=1.20pm0.09$ (calculated from the string length in the cosmic rest frame) and $v_* = 0.609pm 0.014$.
The polarization of Cosmic Microwave Background (CMB) photons is rotated as they pass through (ultralight-) axion string loops. Studying this birefringence can reveal valuable information about the axion-photon coupling and the structure of the strin
We investigate cosmic string networks in the Abelian Higgs model using data from a campaign of large-scale numerical simulations on lattices of up to $4096^3$ grid points. We observe scaling or self-similarity of the networks over a wide range of sca
LIGO-Virgo collaboration has found black holes as heavy as $M sim 30M_odot$ through the detections of the gravitational waves emitted during their mergers. Primordial black holes (PBHs) produced by inflation could be an origin of such events. While i
We present forecasts on the detectability of Ultra-light axion-like particles (ULAP) from future 21cm radio observations around the epoch of reionization (EoR). We show that the axion as the dominant dark matter component has a significant impact on
Axions are some of the best motivated particles beyond the Standard Model. We show how the attractive self-interactions of dark matter (DM) axions over a broad range of masses, from $10^{-22}$ eV to $10^7$ GeV, can lead to nongravitational growth of