ترغب بنشر مسار تعليمي؟ اضغط هنا

The Large-Misalignment Mechanism for the Formation of Compact Axion Structures: Signatures from the QCD Axion to Fuzzy Dark Matter

182   0   0.0 ( 0 )
 نشر من قبل Ken Van Tilburg
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Axions are some of the best motivated particles beyond the Standard Model. We show how the attractive self-interactions of dark matter (DM) axions over a broad range of masses, from $10^{-22}$ eV to $10^7$ GeV, can lead to nongravitational growth of density fluctuations and the formation of bound objects. This structure formation enhancement is driven by parametric resonance when the initial field misalignment is large, and it affects axion density perturbations on length scales of order the Hubble horizon when the axion field starts oscillating, deep inside the radiation-dominated era. This effect can turn an otherwise nearly scale-invariant spectrum of adiabatic perturbations into one that has a spike at the aforementioned scales, producing objects ranging from dense DM halos to scalar-field configurations such as solitons and oscillons. We call this class of cosmological scenarios for axion DM production the large-misalignment mechanism. We explore observational consequences of this mechanism for axions with masses up to $10$ eV. For axions heavier than $10^{-5}$ eV, the compact axion halos are numerous enough to significantly impact Earth-bound direct detection experiments, yielding intermittent but coherent signals with repetition rates exceeding one per decade and crossing times less than a day. These episodic increases in the axion density and kinematic coherence suggest new approaches for axion DM searches, including for the QCD axion. Dense structures made up of axions from $10^{-22}$ eV to $10^{-5}$ eV are detectable through gravitational lensing searches, and their gravitational interactions can also perturb baryonic structures and alter star formation. At very high misalignment amplitudes, the axion field can undergo self-interaction-induced implosions long before matter-radiation equality, producing potentially-detectable low-frequency stochastic gravitational waves.



قيم البحث

اقرأ أيضاً

Axions arise in many theoretical extensions of the Standard Model of particle physics, in particular the string axiverse. If the axion masses, $m_a$, and (effective) decay constants, $f_a$, lie in specific ranges, then axions contribute to the cosmol ogical dark matter and dark energy densities. We compute the background cosmological (quasi-)observables for models with a large number of axion fields, $n_{rm ax}sim mathcal{O}(10-100)$, with the masses and decay constants drawn from statistical distributions. This reduces the number of parameters from $2n_{rm ax}$ to a small number of hyperparameters. We consider a number of distributions, from those motivated purely by statistical considerations, to those where the structure is specified according to a class of M-theory models. Using Bayesian methods we are able to constrain the hyperparameters of the distributions. In some cases the hyperparameters can be related to string theory, e.g. constraining the number ratio of axions to moduli, or the typical decay constant scale needed to provide the correct relic densities. Our methodology incorporates the use of both random matrix theory and Bayesian networks.
Axion-like particles are dark matter candidates motivated by the Peccei-Quinn mechanism and also occur in effective field theories where their masses and photon couplings are independent. We estimate the dispersion of circularly polarized photons in a background of oscillating axion-like particles (ALPs) with the standard $g_{agamma},a,F_{mu u}tilde F^{mu u}/4$ coupling to photons. This leads to birefringence or rotation of linear polarization by ALP dark matter. Cosmic microwave background (CMB) birefringence limits $Delta alpha lesssim (1.0)^circ$ enable us to constrain the axion-photon coupling $g_{agamma} lesssim 10^{-17}-10^{-12},{rm GeV}^{-1}$, for ultra-light ALP masses $m_a sim 10^{-27} - 10^{-24}$ eV. This improves upon previous axion-photon coupling limits by up to four orders of magnitude. Future CMB observations could tighten limits by another one to two orders.
We introduce a new mechanism for generating magnetic fields in the recombination era. This Harrison-like mechanism utilizes vorticity in baryons that is sourced through the Bose-Einstein condensate of axions via gravitational interactions. The magnet ic fields generated are on the galactic scales $sim 10,{rm kpc}$ and have a magnitude of the order of $Bsim10^{-23},{rm G}$ today. The field has a greater magnitude than those generated from other mechanisms relying on second order perturbation theory, and is sufficient to provide a seed for battery mechanisms.
We present forecasts on the detectability of Ultra-light axion-like particles (ULAP) from future 21cm radio observations around the epoch of reionization (EoR). We show that the axion as the dominant dark matter component has a significant impact on the reionization history due to the suppression of small scale density perturbations in the early universe. This behavior depends strongly on the mass of the axion particle. Using numerical simulations of the brightness temperature field of neutral hydrogen over a large redshift range, we construct a suite of training data. This data is used to train a convolutional neural network that can build a connection between the spatial structures of the brightness temperature field and the input axion mass directly. We construct mock observations of the future Square Kilometer Array survey, SKA1-Low, and find that even in the presence of realistic noise and resolution constraints, the network is still able to predict the input axion mass. We find that the axion mass can be recovered over a wide mass range with a precision of approximately 20%, and as the whole DM contribution, the axion can be detected using SKA1-Low at 68% if the axion mass is $M_X<1.86 times10^{-20}$eV although this can decrease to $M_X<5.25 times10^{-21}$eV if we relax our assumptions on the astrophysical modeling by treating those astrophysical parameters as nuisance parameters.
The next generation of axion direct detection experiments may rule out or confirm axions as the dominant source of dark matter. We develop a general likelihood-based framework for studying the time-series data at such experiments, with a focus on the role of dark-matter astrophysics, to search for signatures of the QCD axion or axion like particles. We illustrate how in the event of a detection the likelihood framework may be used to extract measures of the local dark matter phase-space distribution, accounting for effects such as annual modulation and gravitational focusing, which is the perturbation to the dark matter phase-space distribution by the gravitational field of the Sun. Moreover, we show how potential dark matter substructure, such as cold dark matter streams or a thick dark disk, could impact the signal. For example, we find that when the bulk dark matter halo is detected at 5$sigma$ global significance, the unique time-dependent features imprinted by the dark matter component of the Sagittarius stream, even if only a few percent of the local dark matter density, may be detectable at $sim$2$sigma$ significance. A co-rotating dark disk, with lag speed $sim$50 km$/$s, that is $sim$20$%$ of the local DM density could dominate the signal, while colder but as-of-yet unknown substructure may be even more important. Our likelihood formalism, and the results derived with it, are generally applicable to any time-series based approach to axion direct detection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا