ﻻ يوجد ملخص باللغة العربية
The nuclear rainbow observed in the elastic $alpha$-nucleus and light heavy-ion scattering is proven to be due to the refraction of the scattering wave by a deep, attractive real optical potential. The nuclear rainbow pattern, established as a broad oscillation of the Airy minima in the elastic cross section, originates from an interference of the refracted far-side scattering amplitudes. It is natural to expect a similar rainbow pattern also in the inelastic scattering of a nucleus-nucleus system that exhibits a pronounced rainbow pattern in the elastic channel. Although some feature of the nuclear rainbow in the inelastic nucleus-nucleus scattering was observed in experiment, the measured inelastic cross sections exhibit much weaker rainbow pattern, where the Airy oscillation is suppressed and smeared out. To investigate this effect, a novel method of the near-far decomposition of the inelastic scattering amplitude is proposed to explicitly reveal the coupled partial-wave contributions to the inelastic cross section. Using the new decomposition method, our coupled channel analysis of the elastic and inelastic $^{12}$C+$^{12}$C and $^{16}$O+$^{12}$C scattering at the refractive energies shows unambiguously that the suppression of the nuclear rainbow pattern in the inelastic scattering cross section is caused by a destructive interference of the partial waves of different multipoles. However, the inelastic scattering remains strongly refractive in these cases, where the far-side scattering is dominant at medium and large angles like that observed in the elastic scattering.
Large-angle elastic scattering of alpha-particle and strongly-bound light nuclei at a few tens MeV/nucleon has shown the pattern of rainbow scattering. This interesting process was shown to involve a significant overlap of the two colliding nuclei, w
We investigate the property of the high-density nuclear matter probed by the nucleus-nucleus elastic scattering in the framework of the double-folding (DF) model with the complex $G$-matrix interaction. The medium effect including three-body-force (T
We investigate the sensitivity of the medium effect in the high-density region on the nucleus-nucleus elastic scattering in the framework of the double-folding (DF) model with the complex $G$-matrix interaction. The medium effect including three-body
The prospects of extracting new physics signals in a coherent elastic neutrino-nucleus scattering (CE$ u$NS) process are limited by the precision with which the underlying nuclear structure physics, embedded in the weak nuclear form factor, is known.
The present study is focused on the superscaling behavior of electron-nucleus cross sections in the region lying above the quasielastic peak, especially the region dominated by electroexcitation of the Delta. Non-quasielastic cross sections are obtai