ﻻ يوجد ملخص باللغة العربية
Voice disorders affect a large portion of the population, especially heavy voice users such as teachers or call-center workers. Most voice disorders can be treated effectively with behavioral voice therapy, which teaches patients to replace problematic, habituated voice production mechanics with optimal voice production technique(s), yielding improved voice quality. However, treatment often fails because patients have difficulty differentiating their habitual voice from the target technique independently, when clinician feedback is unavailable between therapy sessions. Therefore, with the long term aim to extend clinician feedback to extra-clinical settings, we built two systems that automatically differentiate various voice qualities produced by the same individual. We hypothesized that 1) a system based on i-vectors could classify these qualities as if they represent different speakers and 2) such a system would outperform one based on traditional voice signal processing algorithms. Training recordings were provided by thirteen amateur actors, each producing 5 perceptually different voice qualities in connected speech: normal, breathy, fry, twang, and hyponasal. As hypothesized, the i-vector system outperformed the acoustic measure system in classification accuracy (i.e. 97.5% compared to 77.2%, respectively). Findings are expected because the i-vector system maps features to an integrated space which better represents each voice quality than the 22-feature space of the baseline system. Therefore, an i-vector based system has potential for clinical application in voice therapy and voice training.
Recent state-of-the-art neural text-to-speech (TTS) synthesis models have dramatically improved intelligibility and naturalness of generated speech from text. However, building a good bilingual or code-switched TTS for a particular voice is still a c
We present a novel source separation model to decompose asingle-channel speech signal into two speech segments belonging to two different speakers. The proposed model is a neural network based on residual blocks, and uses learnt speaker embeddings cr
Utilizing a human-perception-related objective function to train a speech enhancement model has become a popular topic recently. The main reason is that the conventional mean squared error (MSE) loss cannot represent auditory perception well. One of
Deep speaker embedding represents the state-of-the-art technique for speaker recognition. A key problem with this approach is that the resulting deep speaker vectors tend to be irregularly distributed. In previous research, we proposed a deep normali
Nowadays, most of the objective speech quality assessment tools (e.g., perceptual evaluation of speech quality (PESQ)) are based on the comparison of the degraded/processed speech with its clean counterpart. The need of a golden reference considerabl