ﻻ يوجد ملخص باللغة العربية
Recent speaker diarisation systems often convert variable length speech segments into fixed-length vector representations for speaker clustering, which are known as speaker embeddings. In this paper, the content-aware speaker embeddings (CASE) approach is proposed, which extends the input of the speaker classifier to include not only acoustic features but also their corresponding speech content, via phone, character, and word embeddings. Compared to alternative methods that leverage similar information, such as multitask or adversarial training, CASE factorises automatic speech recognition (ASR) from speaker recognition to focus on modelling speaker characteristics and correlations with the corresponding content units to derive more expressive representations. CASE is evaluated for speaker re-clustering with a realistic speaker diarisation setup using the AMI meeting transcription dataset, where the content information is obtained by performing ASR based on an automatic segmentation. Experimental results showed that CASE achieved a 17.8% relative speaker error rate reduction over conventional methods.
The goal of this paper is to adapt speaker embeddings for solving the problem of speaker diarisation. The quality of speaker embeddings is paramount to the performance of speaker diarisation systems. Despite this, prior works in the field have direct
The goal of this paper is speaker diarisation of videos collected in the wild. We make three key contributions. First, we propose an automatic audio-visual diarisation method for YouTube videos. Our method consists of active speaker detection using a
We present a novel source separation model to decompose asingle-channel speech signal into two speech segments belonging to two different speakers. The proposed model is a neural network based on residual blocks, and uses learnt speaker embeddings cr
We propose a learnable mel-frequency cepstral coefficient (MFCC) frontend architecture for deep neural network (DNN) based automatic speaker verification. Our architecture retains the simplicity and interpretability of MFCC-based features while allow
In this paper, we propose a new differentiable neural network alignment mechanism for text-dependent speaker verification which uses alignment models to produce a supervector representation of an utterance. Unlike previous works with similar approach