ﻻ يوجد ملخص باللغة العربية
The matroid intersection problem is a fundamental problem that has been extensively studied for half a century. In the classic version of this problem, we are given two matroids $mathcal{M}_1 = (V, mathcal{I}_1)$ and $mathcal{M}_2 = (V, mathcal{I}_2)$ on a comment ground set $V$ of $n$ elements, and then we have to find the largest common independent set $S in mathcal{I}_1 cap mathcal{I}_2$ by making independence oracle queries of the form Is $S in mathcal{I}_1$? or Is $S in mathcal{I}_2$? for $S subseteq V$. The goal is to minimize the number of queries. Beating the existing $tilde O(n^2)$ bound, known as the quadratic barrier, is an open problem that captures the limits of techniques from two lines of work. The first one is the classic Cunninghams algorithm [SICOMP 1986], whose $tilde O(n^2)$-query implementations were shown by CLS+ [FOCS 2019] and Nguyen [2019]. The other one is the general cutting plane method of Lee, Sidford, and Wong [FOCS 2015]. The only progress towards breaking the quadratic barrier requires either approximation algorithms or a more powerful rank oracle query [CLS+ FOCS 2019]. No exact algorithm with $o(n^2)$ independence queries was known. In this work, we break the quadratic barrier with a randomized algorithm guaranteeing $tilde O(n^{9/5})$ independence queries with high probability, and a deterministic algorithm guaranteeing $tilde O(n^{11/6})$ independence queries. Our key insight is simple and fast algorithms to solve a graph reachability problem that arose in the standard augmenting path framework [Edmonds 1968]. Combining this with previous exact and approximation algorithms leads to our results.
We show algorithms for computing representative families for matroid intersections and use them in fixed-parameter algorithms for set packing, set covering, and facility location problems with multiple matroid constraints. We complement our tractability results by hardness results.
The Road Coloring Theorem states that every aperiodic directed graph with constant out-degree has a synchronized coloring. This theorem had been conjectured during many years as the Road Coloring Problem before being settled by A. Trahtman. Trahtmans
We prove that 3-query linear locally correctable codes over the Reals of dimension $d$ require block length $n>d^{2+lambda}$ for some fixed, positive $lambda >0$. Geometrically, this means that if $n$ vectors in $R^d$ are such that each vector is spa
We consider the problem of managing the buffer of a shared-memory switch that transmits packets of unit value. A shared-memory switch consists of an input port, a number of output ports, and a buffer with a specific capacity. In each time step, an ar
In the ordinal Matroid Secretary Problem (MSP), elements from a weighted matroid are presented in random order to an algorithm that must incrementally select a large weight independent set. However, the algorithm can only compare pairs of revealed el