ترغب بنشر مسار تعليمي؟ اضغط هنا

Strong Algorithms for the Ordinal Matroid Secretary Problem

147   0   0.0 ( 0 )
 نشر من قبل Victor Verdugo
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the ordinal Matroid Secretary Problem (MSP), elements from a weighted matroid are presented in random order to an algorithm that must incrementally select a large weight independent set. However, the algorithm can only compare pairs of revealed elements without using its numerical value. An algorithm is $alpha$ probability-competitive if every element from the optimum appears with probability $1/alpha$ in the output. We present a technique to design algorithms with strong probability-competitive ratios, improving the guarantees for almost every matroid class considered in the literature: e.g., we get ratios of 4 for graphic matroids (improving on $2e$ by Korula and Pal [ICALP 2009]) and of 5.19 for laminar matroids (improving on 9.6 by Ma et al. [THEOR COMPUT SYST 2016]). We also obtain new results for superclasses of $k$ column sparse matroids, for hypergraphic matroids, certain gammoids and graph packing matroids, and a $1+O(sqrt{log rho/rho})$ probability-competitive algorithm for uniform matroids of rank $rho$ based on Kleinbergs $1+O(sqrt{1/rho})$ utility-competitive algorithm [SODA 2005] for that class. Our second contribution are algorithms for the ordinal MSP on arbitrary matroids of rank $rho$. We devise an $O(log rho)$ probability-competitive algorithm and an $O(loglog rho)$ ordinal-competitive algorithm, a weaker notion of competitiveness but stronger than the utility variant. These are based on the $O(loglog rho)$ utility-competitive algorithm by Feldman et al.~[SODA 2015].



قيم البحث

اقرأ أيضاً

In the matroid secretary problem we are given a stream of elements and asked to choose a set of elements that maximizes the total value of the set, subject to being an independent set of a matroid given in advance. The difficulty comes from the assum ption that decisions are irrevocable: if we choose to accept an element when it is presented by the stream then we can never get rid of it, and if we choose not to accept it then we cannot later add it. Babaioff, Immorlica, and Kleinberg [SODA 2007] introduced this problem, gave O(1)-competitive algorithms for certain classes of matroids, and conjectured that every matroid admits an O(1)-competitive algorithm. However, most matroids that are known to admit an O(1)-competitive algorithm can be easily represented using graphs (e.g. graphic and transversal matroids). In particular, there is very little known about F-representable matroids (the class of matroids that can be represented as elements of a vector space over a field F), which are one of the foundational matroid classes. Moreover, most of the known techniques are as dependent on graph theory as they are on matroid theory. We go beyond graphs by giving an O(1)-competitive algorithm for regular matroids (the class of matroids that are representable over every field), and use techniques that are matroid-theoretic rather than graph-theoretic. We use the regular matroid decomposition theorem of Seymour to decompose any regular matroid into matroids which are either graphic, cographic, or isomorphic to R_{10}, and then show how to combine algorithms for these basic classes into an algorithm for regular matroids. This allows us to generalize beyond regular matroids to any class of matroids that admits such a decomposition into classes for which we already have good algorithms. In particular, we give an O(1)-competitive algorithm for the class of max-flow min-cut matroids.
We study the success probability for a variant of the secretary problem, with noisy observations and multiple offline selection. Our formulation emulates, and is motivated by, problems involving noisy selection arising in the disciplines of stochasti c simulation and simulation-based optimisation. In addition, we employ the philosophy of ordinal optimisation - involving an ordinal selection rule, and a percentile notion of goal softening for the success probability. As a result, it is shown that the success probability only depends on the underlying copula of the problem. Other general properties for the success probability are also presented. Specialising to the case of Gaussian copulas, we also derive an analytic lower bound for the success probability, which may then be inverted to find sufficiently large sample sizes that guarantee a high success probability arbitrarily close to one.
84 - Alina Ene , Huy L. Nguyen 2018
We consider fast algorithms for monotone submodular maximization subject to a matroid constraint. We assume that the matroid is given as input in an explicit form, and the goal is to obtain the best possible running times for important matroids. We d evelop a new algorithm for a emph{general matroid constraint} with a $1 - 1/e - epsilon$ approximation that achieves a fast running time provided we have a fast data structure for maintaining a maximum weight base in the matroid through a sequence of decrease weight operations. We construct such data structures for graphic matroids and partition matroids, and we obtain the emph{first algorithms} for these classes of matroids that achieve a nearly-optimal, $1 - 1/e - epsilon$ approximation, using a nearly-linear number of function evaluations and arithmetic operations.
We consider two matrix completion problems, in which we are given a matrix with missing entries and the task is to complete the matrix in a way that (1) minimizes the rank, or (2) minimizes the number of distinct rows. We study the parameterized comp lexity of the two aforementioned problems with respect to several parameters of interest, including the minimum number of matrix rows, columns, and rows plus columns needed to cover all missing entries. We obtain new algorithmic results showing that, for the bounded domain case, both problems are fixed-parameter tractable with respect to all aforementioned parameters. We complement these results with a lower-bound result for the unbounded domain case that rules out fixed-parameter tractability w.r.t. some of the parameters under consideration.
323 - Zhengjun Cao , Lihua Liu 2018
Given a set (or multiset) S of n numbers and a target number t, the subset sum problem is to decide if there is a subset of S that sums up to t. There are several methods for solving this problem, including exhaustive search, divide-and-conquer metho d, and Bellmans dynamic programming method. However, none of them could generate universal and light code. In this paper, we present a new deterministic algorithm based on a novel data arrangement, which could generate such code and return all solutions. If n is small enough, it is efficient for usual purpose. We also present a probabilistic version with one-sided error and a greedy algorithm which could generate a solution with minimized variance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا