ﻻ يوجد ملخص باللغة العربية
Methods for processing point cloud information have seen a great success in collider physics applications. One recent breakthrough in machine learning is the usage of Transformer networks to learn semantic relationships between sequences in language processing. In this work, we apply a modified Transformer network called Point Cloud Transformer as a method to incorporate the advantages of the Transformer architecture to an unordered set of particles resulting from collision events. To compare the performance with other strategies, we study jet-tagging applications for highly-boosted particles.
We show that density models describing multiple observables with (i) hard boundaries and (ii) dependence on external parameters may be created using an auto-regressive Gaussian mixture model. The model is designed to capture how observable spectra ar
Novelty detection is the machine learning task to recognize data, which belong to an unknown pattern. Complementary to supervised learning, it allows to analyze data model-independently. We demonstrate the potential role of novelty detection in colli
We present a new versatile building block for deep point cloud processing architectures that is equally suited for diverse tasks. This building block combines the ideas of spatial transformers and multi-view convolutional networks with the efficiency
X-ray free-electron lasers (XFELs) are the only sources currently able to produce bright few-fs pulses with tunable photon energies from 100 eV to more than 10 keV. Due to the stochastic SASE operating principles and other technical issues the output
A selection of unfolding methods commonly used in High Energy Physics is compared. The methods discussed here are: bin-by-bin correction factors, matrix inversion, template fit, Tikhonov regularisation and two examples of iterative methods. Two proce