ﻻ يوجد ملخص باللغة العربية
We report here an experimental setup to perform three-pulse pump-probe measurements over a wide wavelength and temperature range. By combining two pump pulses in the visible (650-900 nm) and mid-IR (5-20 $mu$m) range, with a broadband supercontinuum white-light probe, our apparatus enables both the combined selective excitation of different material degrees of freedom and a full time-dependent reconstruction of the non-equilibrium dielectric function of the sample. We describe here the optical setup, the cryogenic sample environment and the custom-made acquisition electronics capable of referenced single-pulse detection of broadband spectra at the maximum repetition rate of 50 kHz, achieving a sensitivity of the order of 10$^{-4}$ over an integration time of 1 s. We demonstrate the performance of the setup by reporting data on mid-IR pump, optical push and broadband probe in a single-crystal of Bi$_2$Sr$_2$Y$_{0.08}$Ca$_{0.92}$Cu$_2$O$_{8+delta}$ across the superconducting and pseudogap phases.
We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both fs pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21050 cm$^{-1}$. A b
We present a novel microscopic technique to access local transient optical constants and carrier motion in thin-film materials in three dimensions, with sub-10 nm spatial precision and sub-15 fs temporal resolution. Our experimental scheme is based o
Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (X
We investigate the valley related carrier dynamics in monolayer MoS2 using helicity resolved non-degenerate ultrafast pump-probe spectroscopy at the vicinity of the high-symmetry K point under the temperature down to 78 K. Monolayer MoS2 shows remark
The parkerite-type ternary chalcogenide Bi$_2$Rh$_3$Se$_2$ was discovered to be a charge density wave (CDW) superconductor. However, there was a debate on whether the observed phase transition at 240 K could be attributed to the formation of CDW orde