ﻻ يوجد ملخص باللغة العربية
In this paper, we give Maurer-Cartan characterizations as well as a cohomology theory for compatible Lie algebras. Explicitly, we first introduce the notion of a bidifferential graded Lie algebra and thus give Maurer-Cartan characterizations of compatible Lie algebras. Then we introduce a cohomology theory of compatible Lie algebras and use it to classify infinitesimal deformations and abelian extensions of compatible Lie algebras. In particular, we introduce the reduced cohomology of a compatible Lie algebra and establish the relation between the reduced cohomology of a compatible Lie algebra and the cohomology of the corresponding compatible linear Poisson structures introduced by Dubrovin and Zhang in their study of bi-Hamiltonian structures. Finally, we use the Maurer-Cartan approach to classify nonabelian extensions of compatible Lie algebras.
In this paper, first we introduce the notion of a Reynolds operator on an $n$-Lie algebra and illustrate the relationship between Reynolds operators and derivations on an $n$-Lie algebra. We give the cohomology theory of Reynolds operators on an $n$-
S-expansions of three-dimensional real Lie algebras are considered. It is shown that the expansion operation allows one to obtain a non-unimodular Lie algebra from a unimodular one. Nevertheless S-expansions define no ordering on the variety of Lie algebras of a fixed dimension.
Gauged PT quantum mechanics (PTQM) and corresponding Krein space setups are studied. For models with constant non-Abelian gauge potentials and extended parity
In this thesis new objects to the existing set of invariants of Lie algebras are added. These invariant characteristics are capable of describing the nilpotent parametric continuum of Lie algebras. The properties of these invariants, in view of possi
Triangular Lie algebras are the Lie algebras which can be faithfully represented by triangular matrices of any finite size over the real/complex number field. In the paper invariants (generalized Casimir operators) are found for three classes of Lie