ترغب بنشر مسار تعليمي؟ اضغط هنا

Participation Analysis in Impedance Models: The Grey-Box Approach for Power System Stability

167   0   0.0 ( 0 )
 نشر من قبل Yue Zhu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper develops a grey-box approach to small-signal stability analysis of complex power systems that facilitates root-cause tracing without requiring disclosure of the full details of the internal control structure of apparatus connected to the system. The grey-box enables participation analysis in impedance models, which is popular in power electronics and increasingly accepted in power systems for stability analysis. The Impedance participation factor is proposed and defined in terms of the residue of the whole-system admittance matrix. It is proved that, the so defined impedance participation factor equals the sensitivity of the whole-system eigenvalue with respect to apparatus impedance. The classic state participation factor is related to the impedance participation factor via a chain-rule. Based on the chain-rule, a three-layer grey-box approach, with three degrees of transparency, is proposed for root-cause tracing to different depths, i.e. apparatus, states, and parameters, according to the available information. The association of impedance participation factor with eigenvalue sensitivity points to the re-tuning that would stabilize the system. The impedance participation factor can be measured in the field or calculated from the black-box impedance spectra with little prior knowledge required.



قيم البحث

اقرأ أيضاً

Smart thermostats are one of the most prevalent home automation products. They learn occupant preferences and schedules, and utilize an accurate thermal model to reduce the energy use of heating and cooling equipment while maintaining the temperature for maximum comfort. Despite the importance of having an accurate thermal model for the operation of smart thermostats, fast and reliable identification of this model is still an open problem. In this paper, we explore various techniques for establishing a suitable thermal model using time series data generated by smart thermostats. We show that Bayesian neural networks can be used to estimate parameters of a grey-box thermal model if sufficient training data is available, and this model outperforms several black-box models in terms of the temperature prediction accuracy. Leveraging real data from 8,884 homes equipped with smart thermostats, we discuss how the prior knowledge about the model parameters can be utilized to quickly build an accurate thermal model for another home with similar floor area and age in the same climate zone. Moreover, we investigate how to adapt the model originally built for the same home in another season using a small amount of data collected in this season. Our results confirm that maintaining only a small number of pre-trained thermal models will suffice to quickly build accurate thermal models for many other homes, and that 1~day smart thermostat data could significantly improve the accuracy of transferred models in another season.
Electric power grids are critical infrastructure that support modern society by supplying electric energy to critical infrastructure systems. Incidents are increasing that range from natural disasters to cyber attacks. These incidents threaten the re liability of power systems and create disturbances that affect the whole society. While existing standards and technologies are being applied to proactively improve power system reliability and resilience, there are still widespread electricity outages that cause billions of dollars in economic loss annually and threaten societal function and safety. Improving resilience in preparation for such events warrants strategic network design to harden the system. This paper presents an approach to strengthen power system security and reliability against disturbances by expanding the network structure from an ecosystems perspective. Ecosystems have survived a wide range of disturbances over a long time period, and an ecosystems robust structure has been identified as the key element for its survivability. In this paper, we first present a study of the correlation of ecological robustness and power system structures. Then, we present a mixed-integer nonlinear programming problem (MINLP) that expands the transmission network structure to maximize ecological robustness with power system constraints for an improved ability to absorb disturbances. We solve the MINLP problem for the IEEE 24 Bus Reliability Test System and three synthetic power grids with 200-, 500- and 2000-buses, respectively. Our evaluation results show the optimized power systems have increased the networks robustness, more equally distributed power flows, and less violations under different levels of contingencies.
This paper proposes a novel approach to estimate the steady-state angle stability limit (SSASL) by using the nonlinear power system dynamic model in the modal space. Through two linear changes of coordinates and a simplification introduced by the ste ady-state condition, the nonlinear power system dynamic model is transformed into a number of single-machine-like power systems whose power-angle curves can be derived and used for estimating the SSASL. The proposed approach estimates the SSASL of angles at all machines and all buses without the need for manually specifying the scenario, i.e. setting sink and source areas, and also without the need for solving multiple nonlinear power flows. Case studies on 9-bus and 39-bus power systems demonstrate that the proposed approach is always able to capture the aperiodic instability in an online environment, showing promising performance in the online monitoring of the steady-state angle stability over the traditional power flow-based analysis.
With the recent proliferation of open-source packages for computing, power system differential-algebraic equation (DAE) modeling and simulation are being revisited to reduce the programming efforts. Existing open-source tools require manual efforts t o develop code for numerical equations, sparse Jacobians, and discontinuous components. This paper proposes a hybrid symbolic-numeric framework, exemplified by an open-source Python-based library ANDES, which consists of a symbolic layer for descriptive modeling and a numeric layer for vector-based numerical computation. This method enables the implementation of DAE models by mixing and matching modeling components, through which models are described. In the framework, a rich set of discontinuous components and standard transfer function blocks are provided besides essential modeling elements for rapid modeling. ANDES can automatically generate robust and fast numerical simulation code, as well as and high-quality documentation. Case studies present a) two implementations of turbine governor model TGOV1, b) power flow computation time break down for MATPOWER systems, c) validation of time-domain simulation with commercial software using three test systems with a variety of models, and d) the full eigenvalue analysis for Kundurs system. Validation shows that ANDES closely matches the commercial tool DSATools for power flow, time-domain simulation, and eigenvalue analysis.
Phase Shifting Transformers (PST) are used to control or block certain flows of real power through phase angle regulation across the device. Its functionality is crucial to special situations such as eliminating loop flow through an area and balancin g real power flow between parallel paths. Impedance correction tables are used to model that the impedance of phase shifting transformers often vary as a function of their phase angle shift. The focus of this paper is to consider the modeling errors if the impact of this changing impedance is ignored. The simulations are tested through different scenarios using a 37-bus test case and a 10,000-bus synthetic power grid. The results verify the important role of impedance correction factor to get more accurate and optimal power solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا