ﻻ يوجد ملخص باللغة العربية
Phase Shifting Transformers (PST) are used to control or block certain flows of real power through phase angle regulation across the device. Its functionality is crucial to special situations such as eliminating loop flow through an area and balancing real power flow between parallel paths. Impedance correction tables are used to model that the impedance of phase shifting transformers often vary as a function of their phase angle shift. The focus of this paper is to consider the modeling errors if the impact of this changing impedance is ignored. The simulations are tested through different scenarios using a 37-bus test case and a 10,000-bus synthetic power grid. The results verify the important role of impedance correction factor to get more accurate and optimal power solutions.
This paper develops a grey-box approach to small-signal stability analysis of complex power systems that facilitates root-cause tracing without requiring disclosure of the full details of the internal control structure of apparatus connected to the s
This paper proposes a robust transient stability constrained optimal power flow problem that addresses renewable uncertainties by the coordination of generation re-dispatch and power flow router (PFR) tuning.PFR refers to a general type of network-si
We present an omnidirectional wireless power transfer (WPT) system capable of automatic power flow control using three orthogonal transmitter (Tx)-repeater (Rp) pairs. The power drawn from each transmitter is automatically adjusted depending on the m
A significant amount of converter-based generation is being integrated into the bulk electric power grid to fulfill the future electric demand through renewable energy sources, such as wind and photovoltaic. The dynamics of converter systems in the o
This letter investigates parallelism approaches for equation and Jacobian evaluations in large-scale power flow calculation. Two levels of parallelism are proposed and analyzed: inter-model parallelism, which evaluates models in parallel, and intra-m