ﻻ يوجد ملخص باللغة العربية
We study the Hall effect in square, planar type-II superconductors using numerical simulations of time dependent Ginzburg-Landau (TDGL) equations. The Hall field in some type-II superconductors displays sign-change behavior at some magnetic fields due to the induced field of vortex flow, when its contribution is strong enough to reverse the field direction. In this work, we use modified TDGL equations which couple an externally applied current, and also incorporate normal-state and flux-flow Hall effects. We obtain the profile of Hall angle as a function of applied magnetic field for four different sizes (ltimes l) of the superconductor: l/ xi belongs to {3, 5, 15, 20}. We obtain vastly different profiles for each size, proving that size is an important parameter that determines Hall behavior. We find that electric field dynamics provides an insight into several anomalous features including signchange of Hall angle, and leads us to the precise transient behavior of order parameter responsible for them.
Understanding the interaction of vortices with inclusions in type-II superconductors is a major outstanding challenge both for fundamental science and energy applications. At application-relevant scales, the long-range interactions between a dense co
Introducing nanoparticles into superconducting materials has emerged as an efficient route to enhance their current-carrying capability. We address the problem of optimizing vortex pinning landscape for randomly distributed metallic spherical inclusi
It has long been speculated that quasi-two-dimensional superconductivity can reappear above its semiclassical upper critical field due to Landau quantization, yet this reentrant property has never been observed. Here, we argue that twisted bilayer gr
It is an important open problem to understand the landscape of non-Abelian fractional quantum Hall phases which can be obtained starting from physically motivated theories of Abelian composite particles. We show that progress on this problem can be m
We investigated the nature of the quasi-particle state in the vortex core by means of the flux-flow Hall effect measurements at 15.8 GHz. We measured the flux-flow Hall effect in cuprate superconductors, Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{y}$ and YBa$_{2}