ترغب بنشر مسار تعليمي؟ اضغط هنا

Large Hall angle of vortex motion in high-$T_c$ cuprate superconductors revealed by microwave flux-flow Hall effect

100   0   0.0 ( 0 )
 نشر من قبل Ryo Ogawa
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the nature of the quasi-particle state in the vortex core by means of the flux-flow Hall effect measurements at 15.8 GHz. We measured the flux-flow Hall effect in cuprate superconductors, Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{y}$ and YBa$_{2}$Cu$_{3}$O$_{y}$ single crystals, whose equilibrium $B$-$T$ phase diagrams were different. As a result, we found that the Hall angle is independent of the magnetic field, and reaches an order of unity at low temperatures in BSCCO. However, in YBCO, the angle increases with increasing magnetic field even at low temperatures. We understood that this difference in the magnetic field dependence of the Hall angle is due to the difference in the influence of the pinning, which originated from the difference in the vortex state (liquid vs. solid) between the two materials. However, as a common feature, both materials showed a large tangent of the Hall angle at low temperatures, which was larger by an order of magnitude than those obtained in the effective viscous drag coefficient measurements. We discussed the origin of the discrepancy both in terms of the possible nonlinearity of the viscous drag force and possible hidden dissipation mechanisms. The unexpectedly large Hall angle of the vortex motion in cuprates revealed in our flux-flow Hall effect study poses a serious question on the fundamental understanding of the motion of the quantized vortex in superconductors, and it deserves further investigation.



قيم البحث

اقرأ أيضاً

We measure the temperature and frequency dependence of the complex Hall angle for normal state YBa$_2$Cu$_3$O$_7$ films from dc to far-infrared frequencies (20-250 cm$^{-1}$) using a new modulated polarization technique. We determine that the functio nal dependence of the Hall angle on scattering does not fit the expected Lorentzian response. We find spectral evidence supporting models of the Hall effect where the scattering $Gamma_H$ is linear in T, suggesting that a single relaxation rate, linear in temperature, governs transport in the cuprates.
We fabricate van der Waals heterostructure devices using few unit cell thick Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ for magnetotransport measurements. The superconducting transition temperature and carrier density in atomically thin samples can be maintai ned to close to that of the bulk samples. As in the bulk sample, the sign of the Hall conductivity is found to be opposite to the normal state near the transition temperature but with a drastic enlargement of the region of Hall sign reversal in the temperature-magnetic field phase diagram as the thickness of samples decreases. Quantitative analysis of the Hall sign reversal based on the excess charge density in the vortex core and superconducting fluctuations suggests a renormalized superconducting gap in atomically thin samples at the 2-dimensional limit.
185 - J. G. Storey , J. L. Tallon 2012
Evidence from NMR of a two-component spin system in cuprate high-$T_c$ superconductors is shown to be paralleled by similar evidence from the electronic entropy so that a two-component quasiparticle fluid is implicated. We propose that this two-compo nent scenario is restricted to the optimal and underdoped regimes and arises from the upper and lower branches of the reconstructed energy-momentum dispersion proposed by Yang, Rice and Zhang (YRZ) to describe the pseudogap. We calculate the spin susceptibility within the YRZ formalism and show that the doping and temperature dependence reproduces the experimental data for the cuprates.
The interplay between structural and electronic degrees of freedom in complex materials is the subject of extensive debate in physics and materials science. Particularly interesting questions pertain to the nature and extent of pre-transitional short -range order in diverse systems ranging from shape-memory alloys to unconventional superconductors, and how this microstructure affects macroscopic properties. Here we use neutron and X-ray scattering to uncover universal structural fluctuations in La$_{2-x}$Sr$_x$CuO$_4$ and Tl$_2$Ba$_2$CuO$_{6+{delta}}$, two cuprate superconductors with distinct point disorder effects and optimal superconducting transition temperatures. The fluctuations are present in wide doping and temperature ranges, including compositions that maintain high average structural symmetry, and they exhibit unusual, yet simple scaling laws. We relate this behavior to pre-transitional phenomena in a broad class of systems with martensitic transitions, and argue that it can be understood as a rare-region effect caused by intrinsic, doping- and compound-independent nanoscale inhomogeneity. We also uncover remarkable parallels with superconducting fluctuations, which indicates that the underlying inhomogeneity plays a pivotal role in cuprate physics.
91 - In-Ho Lee 2001
The notion of a finite pairing interaction energy range suggested by Nam, results in some states at the Fermi level not participating in pairings when there are scattering centers such as impurities. The fact that not all states at the Fermi level pa rticipate in pairing is shown to suppress $T_c$ in an isotropic superconductor and destroy superconductivity. We have presented quantitative calculations of $T_c$ reduced via spinless impurities, in good agreements with data of Zn-doped YBCO and LSCO, respectively. It is not necessary to have the anisotropic order parameter, to account for the destruction of superconductivity via non-magnetic impurities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا