ﻻ يوجد ملخص باللغة العربية
The hidden order phase in URu$_2$Si$_2$ is highly sensitive to electronic doping. A special interest in silicon-to-phosphorus substitution is due to the fact that it may allow one, in part, to isolate the effects of tuning the chemical potential from the complexity of the correlated $f$ and $d$ electronic states. We investigate the new antiferromagnetic phase that is induced in URu$_2$Si$_{2-x}$P$_x$ at $xgtrsim0.27$. Time-of-flight neutron diffraction of a single crystal ($x=0.28$) reveals $c$-axis collinear $mathbf{q}_mathrm{m}=(frac12,frac12,frac12)$ magnetic structure with localized magnetic moments ($approx2.1,mu_mathrm{B}$). This points to an unexpected analogy between the (Si,P) and (Ru,Rh) substitution series. Through further comparisons with other tuning studies of URu$_2$Si$_2$, we are able to delineate the mechanisms by which silicon-to-phosphorus substitution affects the system. In particular, both the localization of itinerant 5$f$ electrons as well as the choice of $mathbf{q}_m$ appears to be consequences of the increase in chemical potential. Further, enhanced exchange interactions are induced by chemical pressure and lead to magnetic order, in which an increase in inter-layer spacing may play a special role.
We report $^{31}$P and $^{29}$Si NMR in single crystals of URu$_2$Si$_{2-x}$P$_x$ for $x=0.09$ and $x=0.33$. The spectra in the $x=0.33$ sample are consistent with a homogenous commensurate antiferromagnetic phase below $T_N sim 37$ K. The Knight shi
Fe pnictides and related materials have been a topic of intense research for understanding the complex interplay between magnetism and superconductivity. Here we report on the magnetic structure of SrMn$_{2}$As$_{2}$ that crystallizes in a trigonal s
We present neutron diffraction analysis of BaFe$_2$(As$_{1-x}$P$_x$)$_2$ over a wide temperature (10 to 300 K) and compositional ($0.11 leq x leq 0.79$) range, including the normal state, the magnetically ordered state, and the superconducting state.
The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu$_2$Si$_2$. In this paper we discuss its nature and the strong constraints it places on current theories of the hidden order. In the hastatic theory such a
We report a neutron scattering study of the magnetic excitation spectrum in each of the three temperature and pressure driven phases of URu$_2$Si$_2$. We find qualitatively similar excitations throughout the (H0L) scattering plane in the hidden order