ﻻ يوجد ملخص باللغة العربية
The observation of Ising quasiparticles is a signatory feature of the hidden order phase of URu$_2$Si$_2$. In this paper we discuss its nature and the strong constraints it places on current theories of the hidden order. In the hastatic theory such anisotropic quasiparticles are naturally described described by resonant scattering between half-integer spin conduction electrons and integer-spin Ising moments. The hybridization that mixes states of different Kramers parity is spinorial; its role as an symmetry-breaking order parameter is consistent with optical and tunnelling probes that indicate its sudden development at the hidden order transition. We discuss the microscopic origin of hastatic order, identifying it as a fractionalization of three body bound-states into integer spin fermions and half-integer spin bosons. After reviewing key features of hastatic order and their broader implications, we discuss our predictions for experiment and recent measurements. We end with challenges both for hastatic order and more generally for any theory of the hidden order state in URu$_2$Si$_2$.
At T$_0$ = 17.5 K an exotic phase emerges from a heavy fermion state in {ur}. The nature of this hidden order (HO) phase has so far evaded explanation. Formation of an unknown quasiparticle (QP) structure is believed to be responsible for the massive
A second-order phase transition is associated with emergence of an order parameter and a spontaneous symmetry breaking. For the heavy fermion superconductor URu$_2$Si$_2$, the symmetry of the order parameter associated with its ordered phase below 17
We measured the polarized optical conductivity of URu$_2$Si$_2$ from room temperature down to 5 K, covering the Kondo state, the coherent Kondo liquid regime, and the hidden-order phase. The normal state is characterized by an anisotropic behavior be
Quantum materials are epitomized by the influence of collective modes upon their macroscopic properties. Relatively few examples exist, however, whereby coherence of the ground-state wavefunction directly contributes to the conductivity. Notable exam
A review of recent state-of-the-art pulsed field experiments performed on URu$_2$Si$_2$ under a magnetic field applied along its easy magnetic axis $mathbf{c}$ is given. Resistivity, magnetization, magnetic susceptibility, Shubnikov-de Haas, and neut