ﻻ يوجد ملخص باللغة العربية
Deficit of attention, anxiety, sleep disorders are some of the problems which affect many persons. As these issues can evolve into severe conditions, more factors should be taken into consideration. The paper proposes a conception which aims to help students to enhance their brain performance. An electrocephalogram headset is used to trigger the brainwaves, along with a web application which manages the input data which comes from the headset and from the user. Factors like current activity, mood, focus, stress, relaxation, engagement, excitement and interest are provided in numerical format through the use of the headset. The users offer information about their activities related to relaxation, listening to music, watching a movie, and studying. Based on the analysis, it was found that the users consider the application easy to use. As the users are more equilibrated emotionally, their results are improved. This allowed the persons to be more confident on themselves. In the case of students, the neurofeedback can be studied for the better sport and artistic performances, including the case of the attention deficit hyperactivity disorder. Aptitudes for a subject can be determined based on the relevant generated brainwaves. The learning environment is an important factor during the analysis of the results. Teachers, professors, students and parents can collaborate and, based on the gathered data, new teaching methods can be adopted in the classroom and at home. The proposed solution can guide the students while studying, as well as the persons who wish to be more productive while solving their tasks.
In this work we study the use of moderate deviation functions to measure similarity and dissimilarity among a set of given interval-valued data. To do so, we introduce the notion of interval-valued moderate deviation function and we study in particul
We describe the experimental procedures for a dataset that we have made publicly available at https://doi.org/10.5281/zenodo.2649006 in mat and csv formats. This dataset contains electroencephalographic (EEG) recordings of 25 subjects testing the Bra
In this exploratory study, we examine the possibilities of non-invasive Brain-Computer Interface (BCI) in the context of Smart Home Technology (SHT) targeted at older adults. During two workshops, one stationary, and one online via Zoom, we researche
Person identification technology recognizes individuals by exploiting their unique, measurable physiological and behavioral characteristics. However, the state-of-the-art person identification systems have been shown to be vulnerable, e.g., contact l
Brain Computer Interface technologies are popular methods of communication between the human brain and external devices. One of the most popular approaches to BCI is Motor Imagery. In BCI applications, the ElectroEncephaloGraphy is a very popular mea