ترغب بنشر مسار تعليمي؟ اضغط هنا

Automated Query Reformulation for Efficient Search based on Query Logs From Stack Overflow

149   0   0.0 ( 0 )
 نشر من قبل Kaibo Cao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Kaibo Cao




اسأل ChatGPT حول البحث

As a popular Q&A site for programming, Stack Overflow is a treasure for developers. However, the amount of questions and answers on Stack Overflow make it difficult for developers to efficiently locate the information they are looking for. There are two gaps leading to poor search results: the gap between the users intention and the textual query, and the semantic gap between the query and the post content. Therefore, developers have to constantly reformulate their queries by correcting misspelled words, adding limitations to certain programming languages or platforms, etc. As query reformulation is tedious for developers, especially for novices, we propose an automated software-specific query reformulation approach based on deep learning. With query logs provided by Stack Overflow, we construct a large-scale query reformulation corpus, including the original queries and corresponding reformulated ones. Our approach trains a Transformer model that can automatically generate candidate reformulated queries when given the users original query. The evaluation results show that our approach outperforms five state-of-the-art baselines, and achieves a 5.6% to 33.5% boost in terms of $mathit{ExactMatch}$ and a 4.8% to 14.4% boost in terms of $mathit{GLEU}$.



قيم البحث

اقرأ أيضاً

LiveSketch is a novel algorithm for searching large image collections using hand-sketched queries. LiveSketch tackles the inherent ambiguity of sketch search by creating visual suggestions that augment the query as it is drawn, making query specifica tion an iterative rather than one-shot process that helps disambiguate users search intent. Our technical contributions are: a triplet convnet architecture that incorporates an RNN based variational autoencoder to search for images using vector (stroke-based) queries; real-time clustering to identify likely search intents (and so, targets within the search embedding); and the use of backpropagation from those targets to perturb the input stroke sequence, so suggesting alterations to the query in order to guide the search. We show improvements in accuracy and time-to-task over contemporary baselines using a 67M image corpus.
Understanding a users query intent behind a search is critical for modern search engine success. Accurate query intent prediction allows the search engine to better serve the users need by rendering results from more relevant categories. This paper a ims to provide a comprehensive learning framework for modeling query intent under different stages of a search. We focus on the design for 1) predicting users intents as they type in queries on-the-fly in typeahead search using character-level models; and 2) accurate word-level intent prediction models for complete queries. Various deep learning components for query text understanding are experimented. Offline evaluation and online A/B test experiments show that the proposed methods are effective in understanding query intent and efficient to scale for online search systems.
Commonsense knowledge about object properties, human behavior and general concepts is crucial for robust AI applications. However, automatic acquisition of this knowledge is challenging because of sparseness and bias in online sources. This paper pre sents Quasimodo, a methodology and tool suite for distilling commonsense properties from non-standard web sources. We devise novel ways of tapping into search-engine query logs and QA forums, and combining the resulting candidate assertions with statistical cues from encyclopedias, books and image tags in a corroboration step. Unlike prior work on commonsense knowledge bases, Quasimodo focuses on salient properties that are typically associated with certain objects or concepts. Extensive evaluations, including extrinsic use-case studies, show that Quasimodo provides better coverage than state-of-the-art baselines with comparable quality.
Interactive tools make data analysis more efficient and more accessible to end-users by hiding the underlying query complexity and exposing interactive widgets for the parts of the query that matter to the analysis. However, creating custom tailored (i.e., precise) interfaces is very costly, and automated approaches are desirable. We propose a syntactic approach that uses queries from an analysis to generate a tailored interface. We model interface widgets as functions I(q) -> q that modify the current analysis query $q$, and interfaces as the set of queries that its widgets can express. Our system, Precision Interfaces, analyzes structural changes between input queries from an analysis, and generates an output interface with widgets to express those changes. Our experiments on the Sloan Digital Sky Survey query log suggest that Precision Interfaces can generate useful interfaces for simple unanticipated tasks, and our optimizations can generate interfaces from logs of up to 10,000 queries in <10s.
Interactive tools make data analysis both more efficient and more accessible to a broad population. Simple interfaces such as Google Finance as well as complex visual exploration interfaces such as Tableau are effective because they are tailored to t he desired user tasks. Yet, designing interactive interfaces requires technical expertise and domain knowledge. Experts are scarce and expensive, and therefore it is currently infeasible to provide tailored (or precise) interfaces for every user and every task. We envision a data-driven approach to generate tailored interactive interfaces. We observe that interactive interfaces are designed to express sets of programs; thus, samples of programs-increasingly collected by data systems-may help us build interactive interfaces. Based on this idea, Precision Interfaces is a language-agnostic system that examines an input query log, identifies how the queries structurally change, and generates interactive web interfaces to express these changes. The focus of this paper is on applying this idea towards logs of structured queries. Our experiments show that Precision Interfaces can support multiple query languages (SQL and SPARQL), derive Tableaus salient interaction components from OLAP queries, analyze <75k queries in <12 minutes, and generate interaction designs that improve upon existing interfaces and are comparable to human-crafted interfaces.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا