ﻻ يوجد ملخص باللغة العربية
We propose that the odd-frequency $s$ wave ($s^{rm{odd}}$ wave) superconducting gap function, which is usually unstable in the bulk, naturally emerges at the edge of $d$ wave superconductors. This prediction is based on the surface spin fluctuation pairing mechanism owing to the zero-energy surface Andreev bound state. The interference between bulk and edge gap functions triggers the $d+s^{rm{odd}}$ state, and the generated spin current is a useful signal uncovering the ``hidden odd-frequency gap. In addition, the edge $s^{rm{odd}}$ gap can be determined via the proximity effect on the diffusive normal metal. Furthermore, this study provides a decisive validation of the ``Hermite odd-frequency gap function, which has been an open fundamental challenge to this field.
We study the odd-frequency Cooper pairs formed near the surface of superfluid 3He. The odd-frequency pair amplitude is closely related to the local density of states in the low energy limit. We derive a formula relating explicitly the two quantities.
Point contact conductance measurements on topological $Bi_2Te_2Se$ and $Bi_2Se_3$ films reveal a signature of superconductivity below 2-3 K. In particular, critical current dips and a robust zero bias conductance peak are observed. The latter suggest
We formulate a general framework for addressing both odd- and even-frequency superconductivity in Dirac semimetals and demonstrate that the odd-frequency or the Berezinskii pairing can naturally appear in these materials because of the chirality degr
Majorana quasiparticles (MQPs) in condensed matter play an important role in strategies for topological quantum computing but still remain elusive. Vortex cores of topological superconductors may accommodate MQPs that appear as the zero-energy vortex
We study the spin-fluctuation-mediated $spm$-wave superconductivity in the bilayer Hubbard model with vertical and diagonal interlayer hoppings. As in the two-leg ladder model with diagonal hoppings, studied previously by the present authors, superco