ترغب بنشر مسار تعليمي؟ اضغط هنا

Threshold for a discrete-variable sensor of quantum reservoirs

112   0   0.0 ( 0 )
 نشر من قبل Jun-Hong An
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum sensing employs quantum resources of a sensor to attain a smaller estimation error of physical quantities than the limit constrained by classical physics. To measure a quantum reservoir, which is significant in decoherence control, a nonunitary-encoding sensing scheme becomes necessary. However, previous studies showed that the reservoir-induced degradation to quantum resources of the sensor makes the errors divergent with the increase of encoding time. We here propose a scheme to use $N$ two-level systems as the sensor to measure a quantum reservoir. A threshold, above which the shot-noise-limited sensing error saturates or even persistently decreases with the encoding time, is uncovered. Our analysis reveals that it is due to the formation of a bound state of the total sensor-reservoir system. Solving the outstanding error-divergency problem in previous studies, our result supplies an insightful guideline in realizing a sensitive measurement of quantum reservoirs.


قيم البحث

اقرأ أيضاً

97 - Eneet Kaur , Saikat Guha , 2019
We consider discrete-modulation protocols for continuous-variable quantum key distribution (CV-QKD) that employ a modulation constellation consisting of a finite number of coherent states and that use a homodyne or a heterodyne-detection receiver. We establish a security proof for collective attacks in the asymptotic regime, and we provide a formula for an achievable secret-key rate. Previous works established security proofs for discrete-modulation CV-QKD protocols that use two or three coherent states. The main constituents of our approach include approximating a complex, isotropic Gaussian probability distribution by a finite-size Gauss-Hermite constellation, applying entropic continuity bounds, and leveraging previous security proofs for Gaussian-modulation protocols. As an application of our method, we calculate secret-key rates achievable over a lossy thermal bosonic channel. We show that the rates for discrete-modulation protocols approach the rates achieved by a Gaussian-modulation protocol as the constellation size is increased. For pure-loss channels, our results indicate that in the high-loss regime and for sufficiently large constellation size, the achievable key rates scale optimally, i.e., proportional to the channels transmissivity.
Most quantum key distribution (QKD) protocols could be classified as either a discrete-variable (DV) protocol or continuous-variable (CV) protocol, based on how classical information is being encoded. We propose a protocol that combines the best of b oth worlds: the simplicity of quantum state preparation in DV protocols as well as the cost-effective and high bandwidth of homodyne detectors that are normally used in CV protocols. In addition, our protocol does not require the honest parties to share the same reference phase, in contrast to typical CV-QKD protocols. We then prove the security of the proposed protocol in the asymptotic limit under the assumption of collective attacks. Our simulation suggests that the protocol is suitable for secure and high-speed practical key distribution over short distances.
WavePacket is an open-source program package for the numerical simulation of quantum-mechanical dynamics. It can be used to solve time-independent or time-dependent linear Schrodinger and Liouville-von Neumann-equations in one or more dimensions. Als o coupled equations can be treated, which allows to simulate molecular quantum dynamics beyond the Born-Oppenheimer approximation. Optionally accounting for the interaction with external electric fields within the semiclassical dipole approximation, WavePacket can be used to simulate experiments involving tailored light pulses in photo-induced physics or chemistry.The graphical capabilities allow visualization of quantum dynamics on the fly, including Wigner phase space representations. Being easy to use and highly versatile, WavePacket is well suited for the teaching of quantum mechanics as well as for research projects in atomic, molecular and optical physics or in physical or theoretical chemistry.The present Part I deals with the description of closed quantum systems in terms of Schrodinger equations. The emphasis is on discrete variable representations for spatial discretization as well as various techniques for temporal discretization.The upcoming Part II will focus on open quantum systems and dimension reduction; it also describes the codes for optimal control of quantum dynamics.The present work introduces the MATLAB version of WavePacket 5.2.1 which is hosted at the Sourceforge platform, where extensive Wiki-documentation as well as worked-out demonstration examples can be found.
We give an upper bound on the resources required for valuable quantum advantage in pricing derivatives. To do so, we give the first complete resource estimates for useful quantum derivative pricing, using autocallable and Target Accrual Redemption Fo rward (TARF) derivatives as benchmark use cases. We uncover blocking challenges in known approaches and introduce a new method for quantum derivative pricing - the re-parameterization method - that avoids them. This method combines pre-trained variational circuits with fault-tolerant quantum computing to dramatically reduce resource requirements. We find that the benchmark use cases we examine require 8k logical qubits and a T-depth of 54 million. We estimate that quantum advantage would require executing this program at the order of a second. While the resource requirements given here are out of reach of current systems, we hope they will provide a roadmap for further improvements in algorithms, implementations, and planned hardware architectures.
Network integration of quantum key distribution is crucial for its future widespread deployment due to the high cost of using optical fibers dedicated for the quantum channel, only. We studied the performance of a system running a simplified BB84 pro tocol at 2.5 GHz repetition rate, operating in the original wavelength band, short O-band, when multiplexed with communication channels in the conventional wavelength band, short C-band. Our system could successfully generate secret keys over a single-mode fiber with a length of 95.5 km and with co-propagating classical signals at a launch power of 8.9 dBm. Further, we discuss the performance of an ideal system under the same conditions, showing the limits of what is possible with a discrete variable system in the O-band. We also considered a short and lossy link with 51 km optical fiber resembling a real link in a metropolitan area network. In this scenario we could exchange a secret key with a launch power up to 16.7 dBm in the classical channels.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا