ﻻ يوجد ملخص باللغة العربية
Consider the empirical measure, $hat{mathbb{P}}_N$, associated to $N$ i.i.d. samples of a given probability distribution $mathbb{P}$ on the unit interval. For fixed $mathbb{P}$ the Wasserstein distance between $hat{mathbb{P}}_N$ and $mathbb{P}$ is a random variable on the sample space $[0,1]^N$. Our main result is that its normalised quantiles are asymptotically maximised when $mathbb{P}$ is a convex combination between the uniform distribution supported on the two points ${0,1}$ and the uniform distribution on the unit interval $[0,1]$. This allows us to obtain explicit asymptotic confidence regions for the underlying measure $mathbb{P}$. We also suggest extensions to higher dimensions with numerical evidence.
We consider a sequence of identically independently distributed random samples from an absolutely continuous probability measure in one dimension with unbounded density. We establish a new rate of convergence of the $infty-$Wasserstein distance betwe
We study the rate of convergence of the Mallows distance between the empirical distribution of a sample and the underlying population. The surprising feature of our results is that the convergence rate is slower in the discrete case than in the absol
We propose a geometric approach for bounding average stopping times for stopped random walks in discrete and continuous time. We consider stopping times in the hyperspace of time indexes and stochastic processes. Our techniques relies on exploring ge
We prove the asymptotic independence of the empirical process $alpha_n = sqrt{n}( F_n - F)$ and the rescaled empirical distribution function $beta_n = n (F_n(tau+frac{cdot}{n})-F_n(tau))$, where $F$ is an arbitrary cdf, differentiable at some point $
The convergence rate in Wasserstein distance is estimated for the empirical measures of symmetric semilinear SPDEs. Unlike in the finite-dimensional case that the convergence is of algebraic order in time, in the present situation the convergence is