ﻻ يوجد ملخص باللغة العربية
All-optical switching of 77 fs pulses centered at 1560 nm, driven by 270 fs, 1030 nm pulses in a dual-core optical fiber exhibiting high index contrast is presented. The fiber is made of a thermally matched pair of lead silicate and borosilicate glasses used as core and cladding material, respectively. The novel switching approach is based on nonlinear balancing of dual-core asymmetry, by control pulse intensity induced group velocity reduction of the fast fiber channel. Due to the fiber core made of soft glass with high nonlinearity high switching contrast exceeding 20 dB is attained under application of control pulses of only few nanojoule energy. The optimization of the fiber length brought the best results at 14 mm, which is in good correspondence with the calculated coupling length at the signal wavelength. The results express significant progress in comparison to similar studies based on self-switching of solitonic pulses in dual-core fibers and represent high application potential.
A systematic numerical study of ultrafast nonlinear directional coupler performance based on soliton self-trapping in a novel type of dual-core optical fibre is presented. The considered highly nonlinear fibre structure is composed of a real, intenti
Optical nonlinear functions are crucial for various applications in integrated photonics, such as all-optical information processing, photonic neural networks and on-chip ultrafast light sources. Due to the weak nonlinearities in most integrated phot
We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and mon
We experimentally investigate a nonlinear switching mechanism in a dual-core highly nonlinear optical fiber. We focus the input beam of femtosecond pulses on one core only, to identify transitions between inter-core oscillations, self-trapping in the
Coherent control is an optical technique to manipulate quantum states of matter. The coherent control of 40-THz optical phonons in diamond was demonstrated by using a pair of sub-10-fs optical pulses. The optical phonons were detected via transient t