ﻻ يوجد ملخص باللغة العربية
We experimentally investigate a nonlinear switching mechanism in a dual-core highly nonlinear optical fiber. We focus the input beam of femtosecond pulses on one core only, to identify transitions between inter-core oscillations, self-trapping in the cross core, and self-trapping of the pulse in the straight core. A model based in the system of coupled nonlinear Schrodinger equations provides surprisingly good agreement with the experimental findings.
A systematic numerical study of ultrafast nonlinear directional coupler performance based on soliton self-trapping in a novel type of dual-core optical fibre is presented. The considered highly nonlinear fibre structure is composed of a real, intenti
We demonstrate ultrafast soliton-based nonlinear balancing of dual-core asymmetry in highly nonlinear photonic crystal fiber at sub-nanojoule pulse energy level. The effect of fiber asymmetry was studied experimentally by selective excitation and mon
Previous studies of the modulation instability (MI) of continuous waves (CWs) in a two-core fiber (TCF) did not consider effects caused by co-propagation of the two polarized modes in a TCF that possesses birefringence, such as cross-phase modulation
Dual-coupled structure is typically used to actively change the local dispersion of microresonator through controllable avoided mode crossings (AMXs). In this paper, we investigate the reconfigurability of perfect soliton crystals (PSCs) based on dua
All-optical switching of 77 fs pulses centered at 1560 nm, driven by 270 fs, 1030 nm pulses in a dual-core optical fiber exhibiting high index contrast is presented. The fiber is made of a thermally matched pair of lead silicate and borosilicate glas