ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Simulation of Molecules without Fermionic Encoding of the Wave Function

63   0   0.0 ( 0 )
 نشر من قبل David Mazziotti
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Molecular simulations generally require fermionic encoding in which fermion statistics are encoded into the qubit representation of the wave function. Recent calculations suggest that fermionic encoding of the wave function can be bypassed, leading to more efficient quantum computations. Here we show that the energy can be expressed as a functional of the two-electron reduced density matrix (2-RDM) where the 2-RDM is a unique functional of the unencoded $N$-qubit-particle wave function. Contrasts are made with current hardware-efficient methods. An application to computing the ground-state energy and 2-RDM of H$_{4}$ is presented.


قيم البحث

اقرأ أيضاً

Simulating quantum many-body systems is a highly demanding task since the required resources grow exponentially with the dimension of the system. In the case of fermionic systems, this is even harder since nonlocal interactions emerge due to the anti symmetric character of the fermionic wave function. Here, we introduce a digital-analog quantum algorithm to simulate a wide class of fermionic Hamiltonians including the paradigmatic Fermi-Hubbard model. These digital-analog methods allow quantum algorithms to run beyond digit
We investigate the encoding of higher-dimensional logic into quantum states. To that end we introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions and investigate their structure as an algebra over the ring of integers modulo $d$. We point out that the polynomiality of the function is the deciding property for associating hypergraphs to states. Given a polynomial, we map it to a tensor-edge hypergraph, where each edge of the hypergraph is associated with a tensor. We observe how these states generalize the previously defined qudit hypergraph states, especially through the study of a group of finite-function-encoding Pauli stabilizers. Finally, we investigate the structure of FFE states under local unitary operations, with a focus on the bipartite scenario and its connections to the theory of complex Hadamard matrices.
In quantum communications, quantum states are employed for the transmission of information between remote parties. This usually requires sharing knowledge of the measurement bases through a classical public channel in the sifting phase of the protoco l. Here, we demonstrate a quantum communication scheme where the information on the bases is shared non-classically, by encoding this information in the same photons used for carrying the data. This enhanced capability is achieved by exploiting the localization of the photonic wave function, observed when the photons are prepared and measured in the same quantum basis. We experimentally implement our scheme by using a multi-mode optical fiber coupled to an adaptive optics setup. We observe a decrease in the error rate for higher dimensionality, indicating an improved resilience against noise.
Simulation of fermionic many-body systems on a quantum computer requires a suitable encoding of fermionic degrees of freedom into qubits. Here we revisit the Superfast Encoding introduced by Kitaev and one of the authors. This encoding maps a target fermionic Hamiltonian with two-body interactions on a graph of degree $d$ to a qubit simulator Hamiltonian composed of Pauli operators of weight $O(d)$. A system of $m$ fermi modes gets mapped to $n=O(md)$ qubits. We propose Generalized Superfast Encodings (GSE) which require the same number of qubits as the original one but have more favorable properties. First, we describe a GSE such that the corresponding quantum code corrects any single-qubit error provided that the interaction graph has degree $dge 6$. In contrast, we prove that the original Superfast Encoding lacks the error correction property for $dle 6$. Secondly, we describe a GSE that reduces the Pauli weight of the simulator Hamiltonian from $O(d)$ to $O(log{d})$. The robustness against errors and a simplified structure of the simulator Hamiltonian offered by GSEs can make simulation of fermionic systems within the reach of near-term quantum devices. As an example, we apply the new encoding to the fermionic Hubbard model on a 2D lattice.
Simulating a fermionic system on a quantum computer requires encoding the anti-commuting fermionic variables into the operators acting on the qubit Hilbert space. The most familiar of which, the Jordan-Wigner transformation, encodes fermionic operato rs into non-local qubit operators. As non-local operators lead to a slower quantum simulation, recent works have proposed ways of encoding fermionic systems locally. In this work, we show that locality may in fact be too strict of a condition and the size of operators can be reduced by encoding the system quasi-locally. We give examples relevant to lattice models of condensed matter and systems relevant to quantum gravity such as SYK models. Further, we provide a general construction for designing codes to suit the problem and resources at hand and show how one particular class of quasi-local encodings can be thought of as arising from truncating the state preparation circuit of a local encoding. We end with a discussion of designing codes in the presence of device connectivity constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا