ﻻ يوجد ملخص باللغة العربية
Simulating quantum many-body systems is a highly demanding task since the required resources grow exponentially with the dimension of the system. In the case of fermionic systems, this is even harder since nonlocal interactions emerge due to the antisymmetric character of the fermionic wave function. Here, we introduce a digital-analog quantum algorithm to simulate a wide class of fermionic Hamiltonians including the paradigmatic Fermi-Hubbard model. These digital-analog methods allow quantum algorithms to run beyond digit
Simulating quantum physics with a device which itself is quantum mechanical, a notion Richard Feynman originated, would be an unparallelled computational resource. However, the universal quantum simulation of fermionic systems is daunting due to thei
Digital quantum computing paradigm offers highly-desirable features such as universality, scalability, and quantum error correction. However, physical resource requirements to implement useful error-corrected quantum algorithms are prohibitive in the
Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do
Ultrafast chemical reactions are difficult to simulate because they involve entangled, many-body wavefunctions whose computational complexity grows rapidly with molecular size. In photochemistry, the breakdown of the Born-Oppenheimer approximation fu
In recent years, there has been a significant progress in the development of digital quantum processors. The state-of-the-art quantum devices are imperfect, and fully-algorithmic fault-tolerant quantum computing is a matter of future. Until technolog