ﻻ يوجد ملخص باللغة العربية
MAVIS (MCAO-Assisted Visible Imager and Spectrograph) is an instrument proposed for the VLT Adaptive Optics Facility (AOF), which is currently in the phase-A conceptual design study. It will be the first instrument performing Multi-conjugate adaptive optics at visible wavelengths, enabling a new set of science observations. MAVIS will be installed at the Nasmyth platform of VLT UT-4 taking advantage of the already operational Adaptive Optics Facility that consists of 4 LGS and an adaptive secondary mirror with 1170 actuators. In addition, two post-focal deformable mirrors and 3 Natural Guide Stars (NGS) are foreseen for the tomographic reconstruction and correction of atmospheric turbulence. The MAVIS AO module is intended to feed both an imager and a spectrograph that will take advantage of the increased resolution and depth with respect to current instrumentation. In this paper we present the trade-off study for the optical design of the MAVIS AO module, highlighting the peculiarities of the system and the requirements imposed by AO. We propose a set of possible optical solutions able to provide a compact and efficient implementation of the different subsystems and we compare them in terms of delivered optical quality, overall throughput, encumbrance, ease of alignment and residual distortion.
This paper presents the latest optical design for the MOONS triple-arm spectrographs. MOONS will be a Multi-Object Optical and Near-infrared Spectrograph and will be installed on one of the European Southern Observatory (ESO) Very Large Telescopes (V
CRIRES, the ESO high resolution infrared spectrometer, is a unique instrument which allows astronomers to access a parameter space which up to now was largely uncharted. In its current setup, it consists of a single-order spectrograph providing long-
Here we review the current optical mechanical design of MagAO-X. The project is post-PDR and has finished the design phase. The design presented here is the baseline to which all the optics and mechanics have been fabricated. The optical/mechanical p
Families of cosmic inflation models predict a primordial gravitational-wave background that imprints B-mode polarization pattern in the Cosmic Microwave Background (CMB). High sensitivity instruments with wide frequency coverage and well-controlled s
The present work shows a quantitative trade-off analysis of the Simbol-X Mirror Spacecraft (MSC) passive shielding, in the phase space of the various parameters: mass budget, dimension, geometry, and composition. A simplified physical (and geometrica