ترغب بنشر مسار تعليمي؟ اضغط هنا

Updated optical design and trade-off study for MOONS, the Multi-Object Optical and Near Infrared spectrometer for the VLT

254   0   0.0 ( 0 )
 نشر من قبل Nicoletta Sanna
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents the latest optical design for the MOONS triple-arm spectrographs. MOONS will be a Multi-Object Optical and Near-infrared Spectrograph and will be installed on one of the European Southern Observatory (ESO) Very Large Telescopes (VLT). Included in this paper is a trade-off analysis of different types of collimators, cameras, dichroics and filters.



قيم البحث

اقرأ أيضاً

MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of 1000 fibers deployable over a field of view of 500 squ are arcmin, the largest patrol field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8um-1.8um and two resolution modes: medium resolution and high resolution. In the medium resolution mode (R=4,000-6,000) the entire wavelength range 0.8um-1.8um is observed simultaneously, while the high resolution mode covers simultaneously three selected spectral regions: one around the CaII triplet (at R=8,000) to measure radial velocities, and two regions at R=20,000 one in the J-band and one in the H-band, for detailed measurements of chemical abundances. The grasp of the 8.2m Very Large Telescope (VLT) combined with the large multiplex and wavelength coverage of MOONS - extending into the near-IR - will provide the observational power necessary to study galaxy formation and evolution over the entire history of the Universe, from our Milky Way, through the redshift desert and up to the epoch of re-ionization at z>8-9. At the same time, the high spectral resolution mode will allow astronomers to study chemical abundances of stars in our Galaxy, in particular in the highly obscured regions of the Bulge, and provide the necessary follow-up of the Gaia mission. Such characteristics and versatility make MOONS the long-awaited workhorse near-IR MOS for the VLT, which will perfectly complement optical spectroscopy performed by FLAMES and VIMOS.
MAVIS (MCAO-Assisted Visible Imager and Spectrograph) is an instrument proposed for the VLT Adaptive Optics Facility (AOF), which is currently in the phase-A conceptual design study. It will be the first instrument performing Multi-conjugate adaptive optics at visible wavelengths, enabling a new set of science observations. MAVIS will be installed at the Nasmyth platform of VLT UT-4 taking advantage of the already operational Adaptive Optics Facility that consists of 4 LGS and an adaptive secondary mirror with 1170 actuators. In addition, two post-focal deformable mirrors and 3 Natural Guide Stars (NGS) are foreseen for the tomographic reconstruction and correction of atmospheric turbulence. The MAVIS AO module is intended to feed both an imager and a spectrograph that will take advantage of the increased resolution and depth with respect to current instrumentation. In this paper we present the trade-off study for the optical design of the MAVIS AO module, highlighting the peculiarities of the system and the requirements imposed by AO. We propose a set of possible optical solutions able to provide a compact and efficient implementation of the different subsystems and we compare them in terms of delivered optical quality, overall throughput, encumbrance, ease of alignment and residual distortion.
78 - Jer^ome Maire 2018
We propose a novel instrument design to greatly expand the current optical and near-infrared SETI search parameter space by monitoring the entire observable sky during all observable time. This instrument is aimed to search for technosignatures by me ans of detecting nano- to micro-second light pulses that could have been emitted, for instance, for the purpose of interstellar communications or energy transfer. We present an instrument conceptual design based upon an assembly of 198 refracting 0.5-m telescopes tessellating two geodesic domes. This design produces a regular layout of hexagonal collecting apertures that optimizes the instrument footprint, aperture diameter, instrument sensitivity and total field-of-view coverage. We also present the optical performance of some Fresnel lenses envisaged to develop a dedicated panoramic SETI (PANOSETI) observatory that will dramatically increase sky-area searched (pi steradians per dome), wavelength range covered, number of stellar systems observed, interstellar space examined and duration of time monitored with respect to previous optical and near-infrared technosignature finders.
58 - Archita Rai 2020
As a Near-IR instrument to PRLs upcoming 2.5 m telescope, NISP is designed indigeniously at PRL to serve as a multifaceted instrument. Optical, Mechanical and Electronics subsystems are being designed and developed in-house at PRL. It will consist of imaging, spectroscopy and imaging-polarimetry mode in the wavelength bands Y, J, H, Ks i.e. 0.8 - 2.5 micron. The detector is an 2K x 2K H2RG (MCT) array detector from Teledyne, which will give a large FOV of 10 x 10 in the imaging mode. Spectroscopic modes with resolving power of R ~ 3000, will be achieved using grisms. Spectroscopy will be available in single order and a cross-dispersed mode shall be planned for simultaneous spectra. The instrument enables multi-wavelength imaging-polarimetry using Wedged-Double Wollaston (WeDoWo) prisms to get single shot Stokes parameters (I, Q, U) for linear polarisation simultaneously, thus increasing the efficiency of polarisation measurements and reducing observation time.
97 - Maren Cosens 2018
The Pulsed All-sky Near-infrared Optical Search for ExtraTerrestrial Intelligence (PANOSETI) is an instrument program that aims to search for fast transient signals (nano-second to seconds) of artificial or astrophysical origin. The PANOSETI instrume nt objective is to sample the entire observable sky during all observable time at optical and near-infrared wavelengths over 300 - 1650 nm$^1$. The PANOSETI instrument is designed with a number of modular telescope units using Fresnel lenses ($sim$0.5m) arranged on two geodesic domes in order to maximize sky coverage$^2$. We present the prototype design and tests of these modular Fresnel telescope units. This consists of the design of mechanical components such as the lens mounting and module frame. One of the most important goals of the modules is to maintain the characteristics of the Fresnel lens under a variety of operating conditions. We discuss how we account for a range of operating temperatures, humidity, and module orientations in our design in order to minimize undesirable changes to our focal length or angular resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا