ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of the SPECULOOS exoplanet search project

110   0   0.0 ( 0 )
 نشر من قبل Daniel Sebastian
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

SPECULOOS (Search for habitable Planets EClipsing ULtra-cOOl Stars) aims to perform a transit search on the nearest ($<40$pc) ultracool ($<3000$K) dwarf stars. The projects main motivation is to discover potentially habitable planets well-suited for detailed atmospheric characterisation with upcoming giant telescopes, like the James Webb Space Telescope (JWST) and European Large Telescope (ELT). The project is based on a network of 1m robotic telescopes, namely the four ones of the SPECULOOS-Southern Observatory (SSO) in Cerro Paranal, Chile, one telescope of the SPECULOOS-Northern Observatory (SNO) in Tenerife, and the SAINT-Ex telescope in San Pedro Martir, Mexico. The prototype survey of the SPECULOOS project on the 60~cm TRAPPIST telescope (Chile) discovered the TRAPPIST-1 system, composed of seven temperate Earth-sized planets orbiting a nearby (12~pc) Jupiter-sized star. In this paper, we review the current status of SPECULOOS, its first results, the plans for its development, and its connection to the Transiting Exoplanet Survey Satellite (TESS) and JWST.

قيم البحث

اقرأ أيضاً

SPECULOOS-South, an observatory composed of four independent 1m robotic telescopes, located at ESO Paranal, Chile, started scientific operation in January 2019. This Southern Hemisphere facility operates as part of SPECULOOS, an international network of 1m-class telescopes surveying for transiting terrestrial planets around the nearest and brightest ultra-cool dwarfs. To automatically and efficiently process the observations of SPECULOOS-South, and to deal with the specialised photometric requirements of ultra-cool dwarf targets, we present our automatic pipeline. This pipeline includes an algorithm for automated differential photometry and an extensive correction technique for the effects of telluric water vapour, using ground measurements of the precipitable water vapour. Observing very red targets in the near-infrared can result in photometric systematics in the differential lightcurves, related to the temporally-varying, wavelength-dependent opacity of the Earths atmosphere. These systematics are sufficient to affect the daily quality of the lightcurves, the longer time-scale variability study of our targets and even mimic transit-like signals. Here we present the implementation and impact of our water vapour correction method. Using the 179 nights and 98 targets observed in the I+z filter by SPECULOOS-South since January 2019, we show the impressive photometric performance of the facility (with a median precision of ~1.5 mmag for 30-min binning of the raw, non-detrended lightcurves) and assess its detection potential. We compare simultaneous observations with SPECULOOS-South and TESS, to show that we readily achieve high-precision, space-level photometry for bright, ultra-cool dwarfs, highlighting SPECULOOS-South as the first facility of its kind.
The highly radiopure NaI(Tl) was developed to search for particle candidates of dark matter. The optimized methods were combined to reduce various radioactive impurities. The $^{40}$K was effectively reduced by the re-crystallization method. The prog enies of the decay chains of uranium and thorium were reduced by appropriate resins. The concentration of natural potassium in NaI(Tl) crystal was reduced down to 20 ppb. Concentrations of alpha-ray emitters were successfully reduced by appropriate selection of resin. The present concentration of thorium series and 226Ra were $1.2 pm1.4$ $mu$Bq/kg and $13pm4$ $mu$Bq/kg, respectively. No significant excess in the concentration of $^{210}$Pb was obtained, and the upper limit was 5.7 $mu$Bq/kg at 90% C. L. The achieved level of radiopurity of NaI(Tl) crystals makes construction of a dark matter detector possible.
55 - Rene Heller 2019
Is there any hope for us to draw a plausible picture of the future of exoplanet research? Here we extrapolate from the first 25 years of exoplanet discovery into the year 2050. If the power law for the cumulative exoplanet count continues, then almos t 100,000,000 exoplanets would be known by 2050. Although this number sounds ridiculously large, we find that the power law could plausibly continue until at least as far as 2030, when Gaia and WFIRST will have discovered on the order of 100,000 exoplanets. After an early era of radial velocity detection, we are now in the transit era, which might be followed by a transit and astrometry era dominated by the WFIRST and Gaia missions. And then? Maybe more is not better. A small and informal survey among astronomers at the Exoplanet Vision 2050 workshop in Budapest suggests that astrobiological topics might influence the future of exoplanet research.
Transmission spectroscopy is a promising tool for the atmospheric characterization of transiting exoplanets. Because the planetary signal is faint, discrepancies have been reported regarding individual targets. We investigate the dependence of the es timated transmission spectrum on deviations of the orbital parameters of the star-planet system that are due to the limb-darkening effects of the host star. We describe how the uncertainty on the orbital parameters translates into an uncertainty on the planetary spectral slope. We created synthetic transit light curves in seven different wavelength bands, from the near-ultraviolet to the near-infrared, and fit them with transit models parameterized by fixed deviating values of the impact parameter $b$. Our simulations show a wavelength-dependent offset that is more pronounced at the blue wavelengths where the limb-darkening effect is stronger. This offset introduces a slope in the planetary transmission spectrum that becomes steeper with increasing $b$ values. Variations of $b$ by positive or negative values within its uncertainty interval introduce positive or negative slopes, thus the formation of an error envelope. The amplitude from blue optical to near-infrared wavelength for a typical uncertainty on $b$ corresponds to one atmospheric pressure scale height and more. This impact parameter degeneracy is confirmed for different host types; K stars present prominently steeper slopes, while M stars indicate features at the blue wavelengths. We demonstrate that transmission spectra can be hard to interpret, basically because of the limitations in defining a precise impact parameter value for a transiting exoplanet. This consequently limits a characterization of its atmosphere.
223 - G. Tinetti 2011
A dedicated mission to investigate exoplanetary atmospheres represents a major milestone in our quest to understand our place in the universe by placing our Solar System in context and by addressing the suitability of planets for the presence of life . EChO -the Exoplanet Characterisation Observatory- is a mission concept specifically geared for this purpose. EChO will provide simultaneous, multi-wavelength spectroscopic observations on a stable platform that will allow very long exposures. EChO will build on observations by Hubble, Spitzer and groundbased telescopes, which discovered the first molecules and atoms in exoplanetary atmospheres. EChO will simultaneously observe a broad enough spectral region -from the visible to the mid-IR- to constrain from one single spectrum the temperature structure of the atmosphere and the abundances of the major molecular species. The spectral range and resolution are tailored to separate bands belonging to up to 30 molecules to retrieve the composition and temperature structure of planetary atmospheres. The target list for EChO includes planets ranging from Jupiter-sized with equilibrium temperatures Teq up to 2000 K, to those of a few Earth masses, with Teq ~300 K. We have baselined a dispersive spectrograph design covering continuously the 0.4-16 micron spectral range in 6 channels (1 in the VIS, 5 in the IR), which allows the spectral resolution to be adapted from several tens to several hundreds, depending on the target brightness. The instrument will be mounted behind a 1.5 m class telescope, passively cooled to 50 K, with the instrument structure and optics passively cooled to ~45 K. EChO will be placed in a grand halo orbit around L2. We have also undertaken a first-order cost and development plan analysis and find that EChO is easily compatible with the ESA M-class mission framework.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا