ترغب بنشر مسار تعليمي؟ اضغط هنا

A new interval-based aggregation approach based on bagging and Interval Agreement Approach (IAA) in ensemble learning

59   0   0.0 ( 0 )
 نشر من قبل Uwe Aickelin
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The main aim in ensemble learning is using multiple individual classifiers outputs rather than one classifier output to aggregate them for more accurate classification. Generating an ensemble classifier generally is composed of three steps: selecting the base classifier, applying a sampling strategy to generate different individual classifiers and aggregation the classifiers outputs. This paper focuses on the classifiers outputs aggregation step and presents a new interval-based aggregation modeling using bagging resampling approach and Interval Agreement Approach (IAA) in ensemble learning. IAA is an interesting and practical aggregation approach in decision making which was introduced to combine decision makers opinions when they present their opinions by intervals. In this paper, in addition to implementing a new aggregation approach in ensemble learning, we designed some experiments to encourage researchers to use interval modeling in ensemble learning because it preserves more uncertainty and this leads to more accurate classification. For this purpose, we compared the results of implementing the proposed method to the majority vote as the most common and successful aggregation function in the literature on 10 medical data sets to show the better performance of the interval modeling and the proposed interval-based aggregation function in binary classification when it comes to ensemble learning. The results confirm the good performance of our proposed approach.



قيم البحث

اقرأ أيضاً

70 - Shiyou Lian 2021
Starting from finding approximate value of a function, introduces the measure of approximation-degree between two numerical values, proposes the concepts of strict approximation and strict approximation region, then, derives the corresponding one-dim ensional interpolation methods and formulas, and then presents a calculation model called sum-times-difference formula for high-dimensional interpolation, thus develops a new interpolation approach, that is, ADB interpolation. ADB interpolation is applied to the interpolation of actual functions with satisfactory results. Viewed from principle and effect, the interpolation approach is of novel idea, and has the advantages of simple calculation, stable accuracy, facilitating parallel processing, very suiting for high-dimensional interpolation, and easy to be extended to the interpolation of vector valued functions. Applying the approach to instance-based learning, a new instance-based learning method, learning using ADB interpolation, is obtained. The learning method is of unique technique, which has also the advantages of definite mathematical basis, implicit distance weights, avoiding misclassification, high efficiency, and wide range of applications, as well as being interpretable, etc. In principle, this method is a kind of learning by analogy, which and the deep learning that belongs to inductive learning can complement each other, and for some problems, the two can even have an effect of different approaches but equal results in big data and cloud computing environment. Thus, the learning using ADB interpolation can also be regarded as a kind of wide learning that is dual to deep learning.
Model selection is a problem that has occupied machine learning researchers for a long time. Recently, its importance has become evident through applications in deep learning. We propose an agreement-based learning framework that prevents many of the pitfalls associated with model selection. It relies on coupling the training of multiple models by encouraging them to agree on their predictions while training. In contrast with other model selection and combination approaches used in machine learning, the proposed framework is inspired by human learning. We also propose a learning algorithm defined within this framework which manages to significantly outperform alternatives in practice, and whose performance improves further with the availability of unlabeled data. Finally, we describe a number of potential directions for developing more flexible agreement-based learning algorithms.
In many real-world reinforcement learning (RL) problems, besides optimizing the main objective function, an agent must concurrently avoid violating a number of constraints. In particular, besides optimizing performance it is crucial to guarantee the safety of an agent during training as well as deployment (e.g. a robot should avoid taking actions - exploratory or not - which irrevocably harm its hardware). To incorporate safety in RL, we derive algorithms under the framework of constrained Markov decision problems (CMDPs), an extension of the standard Markov decision problems (MDPs) augmented with constraints on expected cumulative costs. Our approach hinges on a novel emph{Lyapunov} method. We define and present a method for constructing Lyapunov functions, which provide an effective way to guarantee the global safety of a behavior policy during training via a set of local, linear constraints. Leveraging these theoretical underpinnings, we show how to use the Lyapunov approach to systematically transform dynamic programming (DP) and RL algorithms into their safe counterparts. To illustrate their effectiveness, we evaluate these algorithms in several CMDP planning and decision-making tasks on a safety benchmark domain. Our results show that our proposed method significantly outperforms existing baselines in balancing constraint satisfaction and performance.
Deep learning applied to electrocardiogram (ECG) data can be used to achieve personal authentication in biometric security applications, but it has not been widely used to diagnose cardiovascular disorders. We developed a deep learning model for the detection of arrhythmia in which time-sliced ECG data representing the distance between successive R-peaks are used as the input for a convolutional neural network (CNN). The main objective is developing the compact deep learning based detect system which minimally uses the dataset but delivers the confident accuracy rate of the Arrhythmia detection. This compact system can be implemented in wearable devices or real-time monitoring equipment because the feature extraction step is not required for complex ECG waveforms, only the R-peak data is needed. The results of both tests indicated that the Compact Arrhythmia Detection System (CADS) matched the performance of conventional systems for the detection of arrhythmia in two consecutive test runs. All features of the CADS are fully implemented and publicly available in MATLAB.
Context, the embedding of previous collected trajectories, is a powerful construct for Meta-Reinforcement Learning (Meta-RL) algorithms. By conditioning on an effective context, Meta-RL policies can easily generalize to new tasks within a few adaptat ion steps. We argue that improving the quality of context involves answering two questions: 1. How to train a compact and sufficient encoder that can embed the task-specific information contained in prior trajectories? 2. How to collect informative trajectories of which the corresponding context reflects the specification of tasks? To this end, we propose a novel Meta-RL framework called CCM (Contrastive learning augmented Context-based Meta-RL). We first focus on the contrastive nature behind different tasks and leverage it to train a compact and sufficient context encoder. Further, we train a separate exploration policy and theoretically derive a new information-gain-based objective which aims to collect informative trajectories in a few steps. Empirically, we evaluate our approaches on common benchmarks as well as several complex sparse-reward environments. The experimental results show that CCM outperforms state-of-the-art algorithms by addressing previously mentioned problems respectively.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا