ﻻ يوجد ملخص باللغة العربية
The main aim in ensemble learning is using multiple individual classifiers outputs rather than one classifier output to aggregate them for more accurate classification. Generating an ensemble classifier generally is composed of three steps: selecting the base classifier, applying a sampling strategy to generate different individual classifiers and aggregation the classifiers outputs. This paper focuses on the classifiers outputs aggregation step and presents a new interval-based aggregation modeling using bagging resampling approach and Interval Agreement Approach (IAA) in ensemble learning. IAA is an interesting and practical aggregation approach in decision making which was introduced to combine decision makers opinions when they present their opinions by intervals. In this paper, in addition to implementing a new aggregation approach in ensemble learning, we designed some experiments to encourage researchers to use interval modeling in ensemble learning because it preserves more uncertainty and this leads to more accurate classification. For this purpose, we compared the results of implementing the proposed method to the majority vote as the most common and successful aggregation function in the literature on 10 medical data sets to show the better performance of the interval modeling and the proposed interval-based aggregation function in binary classification when it comes to ensemble learning. The results confirm the good performance of our proposed approach.
Starting from finding approximate value of a function, introduces the measure of approximation-degree between two numerical values, proposes the concepts of strict approximation and strict approximation region, then, derives the corresponding one-dim
Model selection is a problem that has occupied machine learning researchers for a long time. Recently, its importance has become evident through applications in deep learning. We propose an agreement-based learning framework that prevents many of the
In many real-world reinforcement learning (RL) problems, besides optimizing the main objective function, an agent must concurrently avoid violating a number of constraints. In particular, besides optimizing performance it is crucial to guarantee the
Deep learning applied to electrocardiogram (ECG) data can be used to achieve personal authentication in biometric security applications, but it has not been widely used to diagnose cardiovascular disorders. We developed a deep learning model for the
Context, the embedding of previous collected trajectories, is a powerful construct for Meta-Reinforcement Learning (Meta-RL) algorithms. By conditioning on an effective context, Meta-RL policies can easily generalize to new tasks within a few adaptat