ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel reconstruction technique for two-dimensional Bragg scatter imaging

115   0   0.0 ( 0 )
 نشر من قبل James Webber
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we introduce a new reconstruction technique for two-dimensional Bragg Scattering Tomography (BST), based on the Radon transform models of [arXiv preprint, arXiv:2004.10961 (2020)]. Our method uses a combination of ideas from multibang control and microlocal analysis to construct an objective function which can regularize the BST artifacts; specifically the boundary artifacts due to sharp cutoff in sinogram space (as observed in [arXiv preprint, arXiv:2007.00208 (2020)]), and artifacts arising from approximations made in constructing the model used for inversion. We then test our algorithm in a variety of Monte Carlo (MC) simulated examples of practical interest in airport baggage screening and threat detection. The data used in our studies is generated with a novel Monte-Carlo code presented here. The model, which is available from the authors upon request, captures both the Bragg scatter effects described by BST as well as beam attenuation and Compton scatter.



قيم البحث

اقرأ أيضاً

We consider X-ray coherent scatter imaging, where the goal is to reconstruct momentum transfer profiles (spectral distributions) at each spatial location from multiplexed measurements of scatter. Each material is characterized by a unique momentum tr ansfer profile (MTP) which can be used to discriminate between different materials. We propose an iterative image reconstruction algorithm based on a Poisson noise model that can account for photon-limited measurements as well as various second order statistics of the data. To improve image quality, previous approaches use edge-preserving regularizers to promote piecewise constancy of the image in the spatial domain while treating each spectral bin separately. Instead, we propose spectrally grouped regularization that promotes piecewise constant images along the spatial directions but also ensures that the MTPs of neighboring spatial bins are similar, if they contain the same material. We demonstrate that this group regularization results in improvement of both spectral and spatial image quality. We pursue an optimization transfer approach where convex decompositions are used to lift the problem such that all hyper-voxels can be updated in parallel and in closed-form. The group penalty introduces a challenge since it is not directly amendable to these decompositions. We use the alternating directions method of multipliers (ADMM) to replace the original problem with an equivalent sequence of sub-problems that are amendable to convex decompositions, leading to a highly parallel algorithm. We demonstrate the performance on real data.
A new scheme for communication between overset grids using subcells and Weighted Essentially Non Oscillatory (WENO) reconstruction for two-dimensional problems has been proposed. The effectiveness of this procedure is demonstrated using the discontin uous Galerkin method (DGM). This scheme uses WENO reconstruction using cell averages by dividing the immediate neighbors into subcells to find the degrees of freedom in cells near the overset interface. This also has the added advantage that it also works as a limiter if a discontinuity passes through the overset interface. Accuracy tests to demonstrate the maintenance of higher order are provided. Results containing shocks are also provided to demonstrate the limiter aspect of the data communication procedure.
We derive a new 3D model for magnetic particle imaging (MPI) that is able to incorporate realistic magnetic fields in the reconstruction process. In real MPI scanners, the generated magnetic fields have distortions that lead to deformed magnetic low- field volumes (LFV) with the shapes of ellipsoids or bananas instead of ideal field-free points (FFP) or lines (FFL), respectively. Most of the common model-based reconstruction schemes in MPI use however the idealized assumption of an ideal FFP or FFL topology and, thus, generate artifacts in the reconstruction. Our model-based approach is able to deal with these distortions and can generally be applied to dynamic magnetic fields that are approximately parallel to their velocity field. We show how this new 3D model can be discretized and inverted algebraically in order to recover the magnetic particle concentration. To model and describe the magnetic fields, we use decompositions of the fields in spherical harmonics. We complement the description of the new model with several simulations and experiments.
When using spectral methods, a question arises as how to determine the expansion order, especially for time-dependent problems in which emerging oscillations may require adjusting the expansion order. In this paper, we propose a frequency-dependent $ p$-adaptive technique that adaptively adjusts the expansion order based on a frequency indicator. Using this $p$-adaptive technique, combined with recently proposed scaling and moving techniques, we are able to devise an adaptive spectral method in unbounded domains that can capture and handle diffusion, advection, and oscillations. As an application, we use this adaptive spectral method to numerically solve the Schr{o}dinger equation in the whole domain and successfully capture the solutions oscillatory behavior at infinity.
119 - Gael Rigaud 2019
3D Compton scattering imaging is an upcoming concept exploiting the scattering of photons induced by the electronic structure of the object under study. The so-called Compton scattering rules the collision of particles with electrons and describes th eir energy loss after scattering. Although physically relevant, multiple-order scattering was so far not considered and therefore, only first-order scattering is generally assumed in the literature. The purpose of this work is to argument why and how a contour reconstruction of the electron density map from scattered measurement composed of first- and second-order scattering is possible (scattering of higher orders is here neglected). After the development of integral representations for the first- and second-order scattering, this is achieved by the study of the smoothness properties of associated Fourier integral operators (FIO). The second-order scattered radiation reveals itself to be structurally smoother than the radiation of first-order indicating that the contours of the electron density are essentially encoded within the first-order part. This opens the way to contour-based reconstruction techniques when using multiple scattered data. Our main results, modeling and reconstruction scheme, are successfully implemented on synthetic and Monte-Carlo data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا