ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the He I triplet absorption at 10830 Angstroms in the atmospheres of HD 189733 b and GJ 3470 b

76   0   0.0 ( 0 )
 نشر من قبل Manuel Lamp\\'on Gonz\\'alez-Albo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Characterising the atmospheres of exoplanets is key to understanding their nature and provides hints about their formation and evolution. High-resolution measurements of the helium triplet, He(2$^{3}$S), absorption of highly irradiated planets have been recently reported, which provide a new mean to study their atmospheric escape. In this work, we study the escape of the upper atmospheres of HD 189733 b and GJ 3470 b by analysing high-resolution He(2$^{3}$S) absorption measurements and using a 1D hydrodynamic model coupled with a non-LTE model for the He(2$^{3}$S) state. We also use the H density derived from Ly$alpha$ observations to further constrain their temperatures, T, mass-loss rates,$dot M$, and H/He ratios. We have significantly improved our knowledge of the upper atmospheres of these planets. While HD 189733 b has a rather compressed atmosphere and small gas radial velocities, GJ 3470 b, with a gravitational potential ten times smaller, exhibits a very extended atmosphere and large radial outflow velocities. Hence, although GJ 3470 b is much less irradiated in the XUV, and its upper atmosphere is much cooler, it evaporates at a comparable rate. In particular, we find that the upper atmosphere of HD 189733 b is compact and hot, with a maximum T of 12400$^{+400}_{-300}$ K, with very low mean molecular mass (H/He=(99.2/0.8)$pm0.1$), almost fully ionised above 1.1 R$_p$, and with $dot M$=(1.1$pm0.1$)$times$10$^{11}$ g/s. In contrast, the upper atmosphere of GJ 3470 b is highly extended and relatively cold, with a maximum T of 5100$pm900$ K, also with very low mean molecular mass (H/He=(98.5/1.5)$^{+1.0}_{-1.5}$), not strongly ionised and with $dot M$=(1.9$pm1.1$)$times$10$^{11}$ g/s. Furthermore, our results suggest that the upper atmospheres of giant planets undergoing hydrodynamic escape tend to have very low mean molecular mass (H/He$gtrsim$97/3).

قيم البحث

اقرأ أيضاً

Context: Recently, the He I triplet at 10830 r{A} has been rediscovered as an excellent probe of the extended and possibly evaporating atmospheres of close-in transiting planets. This has already resulted in detections of this triplet in the atmosphe res of a handful of planets, both from space and from the ground. However, while a strong signal is expected for the hot Jupiter HD 209458 b, only upper limits have been obtained so far. Aims: Our goal is to measure the helium excess absorption from HD 209458 b and assess the extended atmosphere of the planet and possible evaporation. Methods: We obtained new high-resolution spectral transit time-series of HD 209458 b using CARMENES at the 3.5 m Calar Alto telescope, targeting the He I triplet at 10830 r{A} at a spectral resolving power of 80 400. The observed spectra were corrected for stellar absorption lines using out of transit data, for telluric absorption using the molecfit software, and for the sky emission lines using simultaneous sky measurements through a second fibre. Results: We detect He I absorption at a level of 0.91 $pm$ 0.10 % (9 $sigma$) at mid-transit. The absorption follows the radial velocity change of the planet during transit, unambiguously identifying the planet as the source of the absorption. The core of the absorption exhibits a net blueshift of 1.8 $pm$ 1.3 km s$^{-1}$. Possible low-level excess absorption is seen further blueward from the main absorption near the centre of the transit, which could be caused by an extended tail. However, this needs to be confirmed. Conclusions: Our results further support a close relationship between the strength of planetary absorption in the helium triplet lines and the level of ionising, stellar X-ray and extreme-UV irradiation.
Understanding the dynamics and kinematics of out-flowing atmospheres of hot and warm exoplanets is crucial to understanding the origins and evolutionary history of the exoplanets near the evaporation desert. Recently, ground based measurements of the meta-stable Helium atoms resonant absorption at 10830 AA~has become a powerful probe of the base environment which is driving the outflow of exoplanet atmospheres. We report evidence for the He I 10830 AA~in absorption (equivalent width $sim$ $0.012 pm 0.002$ AA) in the exosphere of a warm Neptune orbiting the M-dwarf GJ 3470, during three transits using the Habitable Zone Planet Finder (HPF) near infrared spectrograph. This marks the first reported evidence for He I 10830 AA, atmospheric absorption for a planet orbiting an M-dwarf. Our detected absorption is broad and its blueshifted wing extends to -36 km/sec, the largest reported in the literature to date. We modelled the state of Helium atoms in the exosphere of GJ3470b based on assumptions on the UV and X-ray flux of GJ 3470, and found our measurement of flux-weighted column density of meta-stable state Helium $(N_{He^2_3S} = 2.4 times 10^{10} mathrm{cm^{-2}})$, derived from our transit observations, to be consistent with model, within its uncertainties. The methodology developed here will be useful to study and constrain the atmospheric outflow models of other exoplanets like GJ 3470b which are near the edge of the evaporation desert.
We present the first exoplanet atmosphere detection made as part of the SPIRou Legacy Survey, a Large Observing Program of 300 nights exploiting the capabilities of SPIRou, the new near-infrared high-resolution (R ~ 70 000) spectro-polarimeter instal led on the Canada-France-Hawaii Telescope (CFHT; 3.6-m). We observed two transits of HD 189733, an extensively studied hot Jupiter that is known to show prominent water vapor absorption in its transmission spectrum. When combining the two transits, we successfully detect the planets water vapor absorption at 5.9 sigma using a cross-correlation t-test, or with a Delta BIC >10 using a log-likelihood calculation. Using a Bayesian retrieval framework assuming a parametrized T-P profile atmosphere models, we constrain the planet atmosphere parameters, in the region probed by our transmission spectrum, to the following values: VMR[H2O] = -4.4^{+0.4}_{-0.4}, and P_cloud >~ 0.2 bar (grey clouds), both of which are consistent with previous studies of this planet. Our retrieved water volume mixing ratio is slightly sub-solar although, combining it with the previously retrieved super-solar CO abundances from other studies would imply super-solar C/O ratio. We furthermore measure a net blue shift of the planet signal of -4.62^{+0.46}_{-0.44} km s-1, which is somewhat larger than many previous measurements and unlikely to result solely from winds in the planets atmosphere, although it could possibly be explained by a transit signal dominated by the trailing limb of the planet. This large blue shift is observed in all the different detection/retrieval methods that were performed and in each of the two transits independently.
Planets in close orbits around their host stars are subject to strong irradiation. High-energy irradiation, originating from the stellar corona and chromosphere, is mainly responsible for the evaporation of exoplanetary atmospheres. We have conducted multiple X-ray observations of transiting exoplanets in short orbits to determine the extent and heating of their outer planetary atmospheres. In the case of HD 189733 b, we find a surprisingly deep transit profile in X-rays, indicating an atmosphere extending out to 1.75 optical planetary radii. The X-ray opacity of those high-altitude layers points towards large densities or high metallicity. We preliminarily report on observations of the Hot Jupiter CoRoT-2 b from our Large Program with XMM-Newton, which was conducted recently. In addition, we present results on how exoplanets may alter the evolution of stellar activity through tidal interaction.
We report the first attempt to observe the secondary eclipse of a transiting extra-solar planet at radio wavelengths. We observed HD 189733 b with the Robert C. Byrd Green Bank Telescope of the NRAO over about 5.5 hours before, during and after secon dary eclipse, at frequencies of 307 - 347 MHz. In this frequency range, we determine the 3-sigma upper limit to the flux density to be 81 mJy. The data are consistent with no eclipse or a marginal reduction in flux at the time of secondary eclipse in all subsets of our bandwidth; the strongest signal is an apparent eclipse at the 2-sigma level in the 335.2 - 339.3 MHz region. Our observed upper limit is close to theoretical predictions of the flux density of cyclotron-maser radiation from the planet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا