ﻻ يوجد ملخص باللغة العربية
Understanding the dynamics and kinematics of out-flowing atmospheres of hot and warm exoplanets is crucial to understanding the origins and evolutionary history of the exoplanets near the evaporation desert. Recently, ground based measurements of the meta-stable Helium atoms resonant absorption at 10830 AA~has become a powerful probe of the base environment which is driving the outflow of exoplanet atmospheres. We report evidence for the He I 10830 AA~in absorption (equivalent width $sim$ $0.012 pm 0.002$ AA) in the exosphere of a warm Neptune orbiting the M-dwarf GJ 3470, during three transits using the Habitable Zone Planet Finder (HPF) near infrared spectrograph. This marks the first reported evidence for He I 10830 AA, atmospheric absorption for a planet orbiting an M-dwarf. Our detected absorption is broad and its blueshifted wing extends to -36 km/sec, the largest reported in the literature to date. We modelled the state of Helium atoms in the exosphere of GJ3470b based on assumptions on the UV and X-ray flux of GJ 3470, and found our measurement of flux-weighted column density of meta-stable state Helium $(N_{He^2_3S} = 2.4 times 10^{10} mathrm{cm^{-2}})$, derived from our transit observations, to be consistent with model, within its uncertainties. The methodology developed here will be useful to study and constrain the atmospheric outflow models of other exoplanets like GJ 3470b which are near the edge of the evaporation desert.
We confirm the planetary nature of TOI-1728b using a combination of ground-based photometry, near-infrared Doppler velocimetry and spectroscopy with the Habitable-zone Planet Finder.TOI-1728 is an old, inactive M0 star with teff{} $= 3980^{+31}_{-32}
We confirm the planetary nature of a warm Jupiter transiting the early M dwarf TOI-1899, using a combination of available TESS photometry; high-precision, near-infrared spectroscopy with the Habitable-zone Planet Finder; and speckle and adaptive opti
High resolution transit spectroscopy has proven to be a reliable technique for the characterization of the chemical composition of exoplanet atmospheres. Taking advantage of the broad spectral coverage of the CARMENES spectrograph, we initiated a sur
We validate the discovery of a 2 Earth radii sub-Neptune-size planet around the nearby high proper motion M2.5-dwarf G 9-40 (EPIC 212048748), using high-precision near-infrared (NIR) radial velocity (RV) observations with the Habitable-zone Planet Fi
We confirm the planetary nature of TOI-532b, using a combination of precise near-infrared radial velocities with the Habitable-zone Planet Finder, TESS light curves, ground based photometric follow-up, and high-contrast imaging. TOI-532 is a faint (J