ترغب بنشر مسار تعليمي؟ اضغط هنا

DSAL: Deeply Supervised Active Learning from Strong and Weak Labelers for Biomedical Image Segmentation

139   0   0.0 ( 0 )
 نشر من قبل Ziyuan Zhao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Image segmentation is one of the most essential biomedical image processing problems for different imaging modalities, including microscopy and X-ray in the Internet-of-Medical-Things (IoMT) domain. However, annotating biomedical images is knowledge-driven, time-consuming, and labor-intensive, making it difficult to obtain abundant labels with limited costs. Active learning strategies come into ease the burden of human annotation, which queries only a subset of training data for annotation. Despite receiving attention, most of active learning methods generally still require huge computational costs and utilize unlabeled data inefficiently. They also tend to ignore the intermediate knowledge within networks. In this work, we propose a deep active semi-supervised learning framework, DSAL, combining active learning and semi-supervised learning strategies. In DSAL, a new criterion based on deep supervision mechanism is proposed to select informative samples with high uncertainties and low uncertainties for strong labelers and weak labelers respectively. The internal criterion leverages the disagreement of intermediate features within the deep learning network for active sample selection, which subsequently reduces the computational costs. We use the proposed criteria to select samples for strong and weak labelers to produce oracle labels and pseudo labels simultaneously at each active learning iteration in an ensemble learning manner, which can be examined with IoMT Platform. Extensive experiments on multiple medical image datasets demonstrate the superiority of the proposed method over state-of-the-art active learning methods.

قيم البحث

اقرأ أيضاً

Segmentation is a prerequisite yet challenging task for medical image analysis. In this paper, we introduce a novel deeply supervised active learning approach for finger bones segmentation. The proposed architecture is fine-tuned in an iterative and incremental learning manner. In each step, the deep supervision mechanism guides the learning process of hidden layers and selects samples to be labeled. Extensive experiments demonstrated that our method achieves competitive segmentation results using less labeled samples as compared with full annotation.
Learning-based approaches for semantic segmentation have two inherent challenges. First, acquiring pixel-wise labels is expensive and time-consuming. Second, realistic segmentation datasets are highly unbalanced: some categories are much more abundan t than others, biasing the performance to the most represented ones. In this paper, we are interested in focusing human labelling effort on a small subset of a larger pool of data, minimizing this effort while maximizing performance of a segmentation model on a hold-out set. We present a new active learning strategy for semantic segmentation based on deep reinforcement learning (RL). An agent learns a policy to select a subset of small informative image regions -- opposed to entire images -- to be labeled, from a pool of unlabeled data. The region selection decision is made based on predictions and uncertainties of the segmentation model being trained. Our method proposes a new modification of the deep Q-network (DQN) formulation for active learning, adapting it to the large-scale nature of semantic segmentation problems. We test the proof of concept in CamVid and provide results in the large-scale dataset Cityscapes. On Cityscapes, our deep RL region-based DQN approach requires roughly 30% less additional labeled data than our most competitive baseline to reach the same performance. Moreover, we find that our method asks for more labels of under-represented categories compared to the baselines, improving their performance and helping to mitigate class imbalance.
Automated segmentation in medical image analysis is a challenging task that requires a large amount of manually labeled data. However, manually annotating medical data is often laborious, and most existing learning-based approaches fail to accurately delineate object boundaries without effective geometric constraints. Contrastive learning, a sub-area of self-supervised learning, has recently been noted as a promising direction in multiple application fields. In this work, we present a novel Contrastive Voxel-wise Representation Learning (CVRL) method with geometric constraints to learn global-local visual representations for volumetric medical image segmentation with limited annotations. Our framework can effectively learn global and local features by capturing 3D spatial context and rich anatomical information. Specifically, we introduce a voxel-to-volume contrastive algorithm to learn global information from 3D images, and propose to perform local voxel-to-voxel contrast to explicitly make use of local cues in the embedding space. Moreover, we integrate an elastic interaction-based active contour model as a geometric regularization term to enable fast and reliable object delineations in an end-to-end learning manner. Results on the Atrial Segmentation Challenge dataset demonstrate superiority of our proposed scheme, especially in a setting with a very limited number of annotated data.
This paper studies the problem of learning semantic segmentation from image-level supervision only. Current popular solutions leverage object localization maps from classifiers as supervision signals, and struggle to make the localization maps captur e more complete object content. Rather than previous efforts that primarily focus on intra-image information, we address the value of cross-image semantic relations for comprehensive object pattern mining. To achieve this, two neural co-attentions are incorporated into the classifier to complimentarily capture cross-image semantic similarities and differences. In particular, given a pair of training images, one co-attention enforces the classifier to recognize the common semantics from co-attentive objects, while the other one, called contrastive co-attention, drives the classifier to identify the unshared semantics from the rest, uncommon objects. This helps the classifier discover more object patterns and better ground semantics in image regions. In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference, hence eventually benefiting semantic segmentation learning. More essentially, our algorithm provides a unified framework that handles well different WSSS settings, i.e., learning WSSS with (1) precise image-level supervision only, (2) extra simple single-label data, and (3) extra noisy web data. It sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability. Moreover, our approach ranked 1st place in the Weakly-Supervised Semantic Segmentation Track of CVPR2020 Learning from Imperfect Data Challenge.
169 - Hao Zheng , Yizhe Zhang , Lin Yang 2018
3D image segmentation plays an important role in biomedical image analysis. Many 2D and 3D deep learning models have achieved state-of-the-art segmentation performance on 3D biomedical image datasets. Yet, 2D and 3D models have their own strengths an d weaknesses, and by unifying them together, one may be able to achieve more accurate results. In this paper, we propose a new ensemble learning framework for 3D biomedical image segmentation that combines the merits of 2D and 3D models. First, we develop a fully convolutional network based meta-learner to learn how to improve the results from 2D and 3D models (base-learners). Then, to minimize over-fitting for our sophisticated meta-learner, we devise a new training method that uses the results of the base-learners as multip

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا