ﻻ يوجد ملخص باللغة العربية
Crowd segmentation is a fundamental task serving as the basis of crowded scene analysis, and it is highly desirable to obtain refined pixel-level segmentation maps. However, it remains a challenging problem, as existing approaches either require dense pixel-level annotations to train deep learning models or merely produce rough segmentation maps from optical or particle flows with physical models. In this paper, we propose the Motion Prior-Aware Siamese Network (MPASNET) for unsupervised crowd semantic segmentation. This model not only eliminates the need for annotation but also yields high-quality segmentation maps. Specially, we first analyze the coherent motion patterns across the frames and then apply a circular region merging strategy on the collective particles to generate pseudo-labels. Moreover, we equip MPASNET with siamese branches for augmentation-invariant regularization and siamese feature aggregation. Experiments over benchmark datasets indicate that our model outperforms the state-of-the-arts by more than 12% in terms of mIoU.
We study video crowd counting, which is to estimate the number of objects (people in this paper) in all the frames of a video sequence. Previous work on crowd counting is mostly on still images. There has been little work on how to properly extract a
Crowd counting from unconstrained scene images is a crucial task in many real-world applications like urban surveillance and management, but it is greatly challenged by the cameras perspective that causes huge appearance variations in peoples scales
We introduce a novel network, called CO-attention Siamese Network (COSNet), to address the unsupervised video object segmentation task from a holistic view. We emphasize the importance of inherent correlation among video frames and incorporate a glob
Automatic instrument segmentation in video is an essentially fundamental yet challenging problem for robot-assisted minimally invasive surgery. In this paper, we propose a novel framework to leverage instrument motion information, by incorporating a
This paper addresses the task of unsupervised video multi-object segmentation. Current approaches follow a two-stage paradigm: 1) detect object proposals using pre-trained Mask R-CNN, and 2) conduct generic feature matching for temporal association u