ترغب بنشر مسار تعليمي؟ اضغط هنا

MLPF: Efficient machine-learned particle-flow reconstruction using graph neural networks

96   0   0.0 ( 0 )
 نشر من قبل Joosep Pata
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In general-purpose particle detectors, the particle-flow algorithm may be used to reconstruct a comprehensive particle-level view of the event by combining information from the calorimeters and the trackers, significantly improving the detector resolution for jets and the missing transverse momentum. In view of the planned high-luminosity upgrade of the CERN Large Hadron Collider (LHC), it is necessary to revisit existing reconstruction algorithms and ensure that both the physics and computational performance are sufficient in an environment with many simultaneous proton-proton interactions (pileup). Machine learning may offer a prospect for computationally efficient event reconstruction that is well-suited to heterogeneous computing platforms, while significantly improving the reconstruction quality over rule-based algorithms for granular detectors. We introduce MLPF, a novel, end-to-end trainable, machine-learned particle-flow algorithm based on parallelizable, computationally efficient, and scalable graph neural networks optimized using a multi-task objective on simulated events. We report the physics and computational performance of the MLPF algorithm on a Monte Carlo dataset of top quark-antiquark pairs produced in proton-proton collisions in conditions similar to those expected for the high-luminosity LHC. The MLPF algorithm improves the physics response with respect to a rule-based benchmark algorithm and demonstrates computationally scalable particle-flow reconstruction in a high-pileup environment.

قيم البحث

اقرأ أيضاً

Deep learning is a rapidly-evolving technology with possibility to significantly improve physics reach of collider experiments. In this study we developed a novel algorithm of vertex finding for future lepton colliders such as the International Linea r Collider. We deploy two networks; one is simple fully-connected layers to look for vertex seeds from track pairs, and the other is a customized Recurrent Neural Network with an attention mechanism and an encoder-decoder structure to associate tracks to the vertex seeds. The performance of the vertex finder is compared with the standard ILC reconstruction algorithm.
Muons are the most abundant charged particles arriving at sea level originating from the decay of secondary charged pions and kaons. These secondary particles are created when high-energy cosmic rays hit the atmosphere interacting with air nuclei ini tiating cascades of secondary particles which led to the formation of extensive air showers (EAS). They carry essential information about the extra-terrestrial events and are characterized by large flux and varying angular distribution. To account for open questions and the origin of cosmic rays, one needs to study various components of cosmic rays with energy and arriving direction. Because of the close relation between muon and neutrino production, it is the most important particle to keep track of. We propose a novel tracking algorithm based on the Geometric Deep Learning approach using graphical structure to incorporate domain knowledge to track cosmic ray muons in our 3-D scintillator detector. The detector is modeled using the GEANT4 simulation package and EAS is simulated using CORSIKA (COsmic Ray SImulations for KAscade) with a focus on muons originating from EAS. We shed some light on the performance, robustness towards noise and double hits, limitations, and application of the proposed algorithm in tracking applications with the possibility to generalize to other detectors for astrophysical and collider experiments.
Rapidly applying the effects of detector response to physics objects (e.g. electrons, muons, showers of particles) is essential in high energy physics. Currently available tools for the transformation from truth-level physics objects to reconstructed detector-level physics objects involve manually defining resolution functions. These resolution functions are typically derived in bins of variables that are correlated with the resolution (e.g. pseudorapidity and transverse momentum). This process is time consuming, requires manual updates when detector conditions change, and can miss important correlations. Machine learning offers a way to automate the process of building these truth-to-reconstructed object transformations and can capture complex correlation for any given set of input variables. Such machine learning algorithms, with sufficient optimization, could have a wide range of applications: improving phenomenological studies by using a better detector representation, allowing for more efficient production of Geant4 simulation by only simulating events within an interesting part of phase space, and studies on future experimental sensitivity to new physics.
98 - Dimitri Bourilkov 2019
The many ways in which machine and deep learning are transforming the analysis and simulation of data in particle physics are reviewed. The main methods based on boosted decision trees and various types of neural networks are introduced, and cutting- edge applications in the experimental and theoretical/phenomenological domains are highlighted. After describing the challenges in the application of these novel analysis techniques, the review concludes by discussing the interactions between physics and machine learning as a two-way street enriching both disciplines and helping to meet the present and future challenges of data-intensive science at the energy and intensity frontiers.
The identification of jets and their constituents is one of the key problems and challenging task in heavy ion experiments such as experiments at RHIC and LHC. The presence of huge background of soft particles pose a curse for jet finding techniques. The inabilities or lack of efficient techniques to filter out the background lead to a fake or combinatorial jet formation which may have an errorneous interpretation. In this article, we present Graph Reduction technique (GraphRed), a novel class of physics-aware and topology-based attention graph neural network built upon jet physics in heavy ion collisions. This approach directly works with the physical observables of variable-length set of final state particles on an event-by-event basis to find most likely jet-induced particles in an event. This technique demonstrate the robustness and applicability of this method for finding jet-induced particles and show that graph architectures are more efficient than previous frameworks. This technique exhibit foremost time a classifier working on particle-level in each heavy ion event produced at the LHC. We present the applicability and integration of the model with current jet finding algorithms such as FastJet.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا