ترغب بنشر مسار تعليمي؟ اضغط هنا

ParaSCI: A Large Scientific Paraphrase Dataset for Longer Paraphrase Generation

223   0   0.0 ( 0 )
 نشر من قبل Qingxiu Dong
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose ParaSCI, the first large-scale paraphrase dataset in the scientific field, including 33,981 paraphrase pairs from ACL (ParaSCI-ACL) and 316,063 pairs from arXiv (ParaSCI-arXiv). Digging into characteristics and common patterns of scientific papers, we construct this dataset though intra-paper and inter-paper methods, such as collecting citations to the same paper or aggregating definitions by scientific terms. To take advantage of sentences paraphrased partially, we put up PDBERT as a general paraphrase discovering method. The major advantages of paraphrases in ParaSCI lie in the prominent length and textual diversity, which is complementary to existing paraphrase datasets. ParaSCI obtains satisfactory results on human evaluation and downstream tasks, especially long paraphrase generation.



قيم البحث

اقرأ أيضاً

Paraphrasing exists at different granularity levels, such as lexical level, phrasal level and sentential level. This paper presents Decomposable Neural Paraphrase Generator (DNPG), a Transformer-based model that can learn and generate paraphrases of a sentence at different levels of granularity in a disentangled way. Specifically, the model is composed of multiple encoders and decoders with different structures, each of which corresponds to a specific granularity. The empirical study shows that the decomposition mechanism of DNPG makes paraphrase generation more interpretable and controllable. Based on DNPG, we further develop an unsupervised domain adaptation method for paraphrase generation. Experimental results show that the proposed model achieves competitive in-domain performance compared to the state-of-the-art neural models, and significantly better performance when adapting to a new domain.
In this paper, we investigate the diversity aspect of paraphrase generation. Prior deep learning models employ either decoding methods or add random input noise for varying outputs. We propose a simple method Diverse Paraphrase Generation (D-PAGE), w hich extends neural machine translation (NMT) models to support the generation of diverse paraphrases with implicit rewriting patterns. Our experimental results on two real-world benchmark datasets demonstrate that our model generates at least one order of magnitude more diverse outputs than the baselines in terms of a new evaluation metric Jeffreys Divergence. We have also conducted extensive experiments to understand various properties of our model with a focus on diversity.
Many natural language generation tasks, such as abstractive summarization and text simplification, are paraphrase-orientated. In these tasks, copying and rewriting are two main writing modes. Most previous sequence-to-sequence (Seq2Seq) models use a single decoder and neglect this fact. In this paper, we develop a novel Seq2Seq model to fuse a copying decoder and a restricted generative decoder. The copying decoder finds the position to be copied based on a typical attention model. The generative decoder produces words limited in the source-specific vocabulary. To combine the two decoders and determine the final output, we develop a predictor to predict the mode of copying or rewriting. This predictor can be guided by the actual writing mode in the training data. We conduct extensive experiments on two different paraphrase datasets. The result shows that our model outperforms the state-of-the-art approaches in terms of both informativeness and language quality.
Automatic generation of paraphrases from a given sentence is an important yet challenging task in natural language processing (NLP), and plays a key role in a number of applications such as question answering, search, and dialogue. In this paper, we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new framework for the task, which consists of a textit{generator} and an textit{evaluator}, both of which are learned from data. The generator, built as a sequence-to-sequence learning model, can produce paraphrases given a sentence. The evaluator, constructed as a deep matching model, can judge whether two sentences are paraphrases of each other. The generator is first trained by deep learning and then further fine-tuned by reinforcement learning in which the reward is given by the evaluator. For the learning of the evaluator, we propose two methods based on supervised learning and inverse reinforcement learning respectively, depending on the type of available training data. Empirical study shows that the learned evaluator can guide the generator to produce more accurate paraphrases. Experimental results demonstrate the proposed models (the generators) outperform the state-of-the-art methods in paraphrase generation in both automatic evaluation and human evaluation.
In this paper, we propose a new paradigm for paraphrase generation by treating the task as unsupervised machine translation (UMT) based on the assumption that there must be pairs of sentences expressing the same meaning in a large-scale unlabeled mon olingual corpus. The proposed paradigm first splits a large unlabeled corpus into multiple clusters, and trains multiple UMT models using pairs of these clusters. Then based on the paraphrase pairs produced by these UMT models, a unified surrogate model can be trained to serve as the final Seq2Seq model to generate paraphrases, which can be directly used for test in the unsupervised setup, or be finetuned on labeled datasets in the supervised setup. The proposed method offers merits over machine-translation-based paraphrase generation methods, as it avoids reliance on bilingual sentence pairs. It also allows human intervene with the model so that more diverse paraphrases can be generated using different filtering criteria. Extensive experiments on existing paraphrase dataset for both the supervised and unsupervised setups demonstrate the effectiveness the proposed paradigm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا