ترغب بنشر مسار تعليمي؟ اضغط هنا

Paraphrase Generation as Unsupervised Machine Translation

123   0   0.0 ( 0 )
 نشر من قبل Jiwei Li
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose a new paradigm for paraphrase generation by treating the task as unsupervised machine translation (UMT) based on the assumption that there must be pairs of sentences expressing the same meaning in a large-scale unlabeled monolingual corpus. The proposed paradigm first splits a large unlabeled corpus into multiple clusters, and trains multiple UMT models using pairs of these clusters. Then based on the paraphrase pairs produced by these UMT models, a unified surrogate model can be trained to serve as the final Seq2Seq model to generate paraphrases, which can be directly used for test in the unsupervised setup, or be finetuned on labeled datasets in the supervised setup. The proposed method offers merits over machine-translation-based paraphrase generation methods, as it avoids reliance on bilingual sentence pairs. It also allows human intervene with the model so that more diverse paraphrases can be generated using different filtering criteria. Extensive experiments on existing paraphrase dataset for both the supervised and unsupervised setups demonstrate the effectiveness the proposed paradigm.



قيم البحث

اقرأ أيضاً

We present a self-attention based bilingual adversarial text generator (B-GAN) which can learn to generate text from the encoder representation of an unsupervised neural machine translation system. B-GAN is able to generate a distributed latent space representation which can be paired with an attention based decoder to generate fluent sentences. When trained on an encoder shared between two languages and paired with the appropriate decoder, it can generate sentences in either language. B-GAN is trained using a combination of reconstruction loss for auto-encoder, a cross domain loss for translation and a GAN based adversarial loss for text generation. We demonstrate that B-GAN, trained on monolingual corpora only using multiple losses, generates more fluent sentences compared to monolingual baselines while effectively using half the number of parameters.
Large scale Pre-trained Language Models have proven to be very powerful approach in various Natural language tasks. OpenAIs GPT-2 cite{radford2019language} is notable for its capability to generate fluent, well formulated, grammatically consistent te xt and for phrase completions. In this paper we leverage this generation capability of GPT-2 to generate paraphrases without any supervision from labelled data. We examine how the results compare with other supervised and unsupervised approaches and the effect of using paraphrases for data augmentation on downstream tasks such as classification. Our experiments show that paraphrases generated with our model are of good quality, are diverse and improves the downstream task performance when used for data augmentation.
247 - Yuxian Meng , Xiang Ao , Qing He 2021
A long-standing issue with paraphrase generation is how to obtain reliable supervision signals. In this paper, we propose an unsupervised paradigm for paraphrase generation based on the assumption that the probabilities of generating two sentences wi th the same meaning given the same context should be the same. Inspired by this fundamental idea, we propose a pipelined system which consists of paraphrase candidate generation based on contextual language models, candidate filtering using scoring functions, and paraphrase model training based on the selected candidates. The proposed paradigm offers merits over existing paraphrase generation methods: (1) using the context regularizer on meanings, the model is able to generate massive amounts of high-quality paraphrase pairs; and (2) using human-interpretable scoring functions to select paraphrase pairs from candidates, the proposed framework provides a channel for developers to intervene with the data generation process, leading to a more controllable model. Experimental results across different tasks and datasets demonstrate that the effectiveness of the proposed model in both supervised and unsupervised setups.
159 - Kelly Marchisio , Kevin Duh , 2020
Despite the reported success of unsupervised machine translation (MT), the field has yet to examine the conditions under which these methods succeed, and where they fail. We conduct an extensive empirical evaluation of unsupervised MT using dissimila r language pairs, dissimilar domains, diverse datasets, and authentic low-resource languages. We find that performance rapidly deteriorates when source and target corpora are from different domains, and that random word embedding initialization can dramatically affect downstream translation performance. We additionally find that unsupervised MT performance declines when source and target languages use different scripts, and observe very poor performance on authentic low-resource language pairs. We advocate for extensive empirical evaluation of unsupervised MT systems to highlight failure points and encourage continued research on the most promising paradigms.
Unsupervised neural machine translation (UNMT) is beneficial especially for low resource languages such as those from the Dravidian family. However, UNMT systems tend to fail in realistic scenarios involving actual low resource languages. Recent work s propose to utilize auxiliary parallel data and have achieved state-of-the-art results. In this work, we focus on unsupervised translation between English and Kannada, a low resource Dravidian language. We additionally utilize a limited amount of auxiliary data between English and other related Dravidian languages. We show that unifying the writing systems is essential in unsupervised translation between the Dravidian languages. We explore several model architectures that use the auxiliary data in order to maximize knowledge sharing and enable UNMT for distant language pairs. Our experiments demonstrate that it is crucial to include auxiliary languages that are similar to our focal language, Kannada. Furthermore, we propose a metric to measure language similarity and show that it serves as a good indicator for selecting the auxiliary languages.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا