ترغب بنشر مسار تعليمي؟ اضغط هنا

IntentNet: Learning to Predict Intention from Raw Sensor Data

219   0   0.0 ( 0 )
 نشر من قبل Sergio Casas
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In order to plan a safe maneuver, self-driving vehicles need to understand the intent of other traffic participants. We define intent as a combination of discrete high-level behaviors as well as continuous trajectories describing future motion. In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment. Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.



قيم البحث

اقرأ أيضاً

The ability to communicate intention enables decentralized multi-agent robots to collaborate while performing physical tasks. In this work, we present spatial intention maps, a new intention representation for multi-agent vision-based deep reinforcem ent learning that improves coordination between decentralized mobile manipulators. In this representation, each agents intention is provided to other agents, and rendered into an overhead 2D map aligned with visual observations. This synergizes with the recently proposed spatial action maps framework, in which state and action representations are spatially aligned, providing inductive biases that encourage emergent cooperative behaviors requiring spatial coordination, such as passing objects to each other or avoiding collisions. Experiments across a variety of multi-agent environments, including heterogeneous robot teams with different abilities (lifting, pushing, or throwing), show that incorporating spatial intention maps improves performance for different mobile manipulation tasks while significantly enhancing cooperative behaviors.
High-definition maps (HD maps) are a key component of most modern self-driving systems due to their valuable semantic and geometric information. Unfortunately, building HD maps has proven hard to scale due to their cost as well as the requirements th ey impose in the localization system that has to work everywhere with centimeter-level accuracy. Being able to drive without an HD map would be very beneficial to scale self-driving solutions as well as to increase the failure tolerance of existing ones (e.g., if localization fails or the map is not up-to-date). Towards this goal, we propose MP3, an end-to-end approach to mapless driving where the input is raw sensor data and a high-level command (e.g., turn left at the intersection). MP3 predicts intermediate representations in the form of an online map and the current and future state of dynamic agents, and exploits them in a novel neural motion planner to make interpretable decisions taking into account uncertainty. We show that our approach is significantly safer, more comfortable, and can follow commands better than the baselines in challenging long-term closed-loop simulations, as well as when compared to an expert driver in a large-scale real-world dataset.
Consistently testing autonomous mobile robots in real world scenarios is a necessary aspect of developing autonomous navigation systems. Each time the human safety monitor disengages the robots autonomy system due to the robot performing an undesirab le maneuver, the autonomy developers gain insight into how to improve the autonomy system. However, we believe that these disengagements not only show where the system fails, which is useful for troubleshooting, but also provide a direct learning signal by which the robot can learn to navigate. We present a reinforcement learning approach for learning to navigate from disengagements, or LaND. LaND learns a neural network model that predicts which actions lead to disengagements given the current sensory observation, and then at test time plans and executes actions that avoid disengagements. Our results demonstrate LaND can successfully learn to navigate in diverse, real world sidewalk environments, outperforming both imitation learning and reinforcement learning approaches. Videos, code, and other material are available on our website https://sites.google.com/view/sidewalk-learning
204 - Xin Ye , Yezhou Yang 2020
Visual Indoor Navigation (VIN) task has drawn increasing attention from the data-driven machine learning communities especially with the recently reported success from learning-based methods. Due to the innate complexity of this task, researchers hav e tried approaching the problem from a variety of different angles, the full scope of which has not yet been captured within an overarching report. This survey first summarizes the representative work of learning-based approaches for the VIN task and then identifies and discusses lingering issues impeding the VIN performance, as well as motivates future research in these key areas worth exploring for the community.
In this paper, we present a general framework for learning social affordance grammar as a spatiotemporal AND-OR graph (ST-AOG) from RGB-D videos of human interactions, and transfer the grammar to humanoids to enable a real-time motion inference for h uman-robot interaction (HRI). Based on Gibbs sampling, our weakly supervised grammar learning can automatically construct a hierarchical representation of an interaction with long-term joint sub-tasks of both agents and short term atomic actions of individual agents. Based on a new RGB-D video dataset with rich instances of human interactions, our experiments of Baxter simulation, human evaluation, and real Baxter test demonstrate that the model learned from limited training data successfully generates human-like behaviors in unseen scenarios and outperforms both baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا