ترغب بنشر مسار تعليمي؟ اضغط هنا

Energy resolution of a photon-counting silicon strip detector

82   0   0.0 ( 0 )
 نشر من قبل Erik Fredenberg
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A photon-counting silicon strip detector with two energy thresholds was investigated for spectral X-ray imaging in a mammography system. Preliminary studies already indicate clinical benefit of the detector, and the purpose of the present study is optimization with respect to energy resolution. Factors relevant for the energy response were measured, simulated, or gathered from previous studies, and used as input parameters to a cascaded detector model. Threshold scans over several X-ray spectra were used to calibrate threshold levels to energy, and to validate the model. The energy resolution of the detector assembly was assessed to range over DeltaE/E = 0.12-0.26 in the mammography region. Electronic noise dominated the peak broadening, followed by charge sharing between adjacent detector strips, and a channel-to-channel threshold spread. The energy resolution may be improved substantially if these effects are reduced to a minimum. Anti-coincidence logic mitigated double counting from charge sharing, but erased the energy resolution of all detected events, and optimization of the logic is desirable. Pile-up was found to be of minor importance at typical mammography rates.

قيم البحث

اقرأ أيضاً

The performance of hybrid GaAs pixel detectors as X-ray imaging sensors were investigated at room temperature. These hybrids consist of 300 mu-m thick GaAs pixel detectors, flip-chip bonded to a CMOS Single Photon Counting Chip (PCC). This chip consi sts of a matrix of 64 x 64 identical square pixels (170 mu-m x 170 mu-m) and covers a total area of 1.2 cm**2. The electronics in each cell comprises a preamplifier, a discriminator with a 3-bit threshold adjust and a 15-bit counter. The detector is realized by an array of Schottky diodes processed on semi-insulating LEC-GaAs bulk material. An IV-charcteristic and a detector bias voltage scan showed that the detector can be operated with voltages around 200 V. Images of various objects were taken by using a standard X-ray tube for dental diagnostics. The signal to noise ratio (SNR) was also determined. The applications of these imaging systems range from medical applications like digital mammography or dental X-ray diagnostics to non destructive material testing (NDT). Because of the separation of detector and readout chip, different materials can be investigated and compared.
254 - L.Arnold , J.Baudot , D.Bonnet 2002
The STAR Silicon Strip Detector (SSD) completes the three layers of the Silicon Vertex Tracker (SVT) to make an inner tracking system located inside the Time Projection Chamber (TPC). This additional fourth layer provides two dimensional hit position and energy loss measurements for charged particles, improving the extrapolation of TPC tracks through SVT hits. To match the high multiplicity of central Au+Au collisions at RHIC the double sided silicon strip technology was chosen which makes the SSD a half million channels detector. Dedicated electronics have been designed for both readout and control. Also a novel technique of bonding, the Tape Automated Bonding (TAB), was used to fullfill the large number of bounds to be done. All aspects of the SSD are shortly described here and test performances of produced detection modules as well as simulated results on hit reconstruction are given.
The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. The low-noise analog ASIC VA140 was used in this study f or DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400~800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and particle incident position reconstruction of the DSSD module are presented.
The latest results from the commissioning of the SSD with cosmics are presented in this paper. The hardware status of the detector, the front-end electronics, cooling, data acquisition and issues related to the on-line monitoring are shown. In additi on, the procedures implemented and followed to address the alignment with the rest of the ITS sub-detectors along with both on-line and off-line calibration strategies are described. Finally, results from simulations as well as from the reconstruction of cosmic data demonstrating the performance of the detector are presented, proving that the SSD is ready for the forthcoming proton-proton data taking.
141 - K.Doroud , Z.Liu , M.C.S. Williams 2019
Measurement of the Time-of-Flight (TOF) of the 511 keV gammas brings an important reduction of statistical noise in the PET image, with higher precision time measurements producing clearer images. Scintillating crystals are used to convert the 511 ke V annihilation photon to an electron of ~511 KeV energy via the photoelectric effect; it is necessary to determine with precision the position and time of this conversion within the scintillating crystal. We propose using an array of crystals cut into a specific geometry discussed below; these crystals are read out by an array of strip SiPMs. This technique allows individual time measurements of the first arriving photo-electrons and to extract the best time resolution using a specific algorithm. The final result is a precise determination of the 3D position (that includes the depth of interaction) of the photoelectric interaction and an improved time measurement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا