ﻻ يوجد ملخص باللغة العربية
The ice-rich dwarf planet Ceres is the largest object in the main asteroid belt and is thought to have a brine or mud layer at a depth of tens of kilometers. Furthermore, recent surface deposits of brine-sourced material imply shallow feeder structures such as sills or dikes. Inductive sounding of Ceres can be performed using the solar wind as a source, as was done for the Moon during Apollo. However, the magnetotelluric method -- measuring both electric and magnetic fields at the surface -- is not sensitive to plasma effects that were experienced for Apollo, which used an orbit-to-surface magnetic transfer function. The highly conductive brine targets are readily separable from the resistive ice and rock interior, such that the depth to deep and shallow brines can be assessed simultaneously. The instrumentation will be tested on the Moon in 2023 and is ready for implementation on a Ceres landed mission.
In order to investigate the causes of different spectral slope in ccps, different grain-sizes of Ceres analogue mixtures were produced, heated to remove absorption of atmospheric water, and spectrally analyzed. First, the end-members which compose th
The surface reflectance of planetary regoliths may increase dramatically towards zero phase angle, a phenomenon known as the opposition effect (OE). Two physical processes that are thought to be the dominant contributors to the brightness surge are s
Performing orbital insertion around Mars using aerocapture instead of a propulsive orbit insertion manoeuvre allows to save resources and/or increase the payload mass fraction. Aerocapture has never been employed to date because of the high uncertain
A diurnal varying haze layer at the bright spots of Occator on dwarf planet Ceres has been reported from images of the Dawn Framing Camera. This finding is supported by ground-based observations revealing diurnal albedo changes at Occators longitude.
As the NASA Transiting Exoplanet Survey Satellite (TESS) fulfills its primary mission it is executing an unprecedented all-sky survey with the potential to discover distant planets in our own solar system, as well as hundreds of Transneptunian Object