ﻻ يوجد ملخص باللغة العربية
A diurnal varying haze layer at the bright spots of Occator on dwarf planet Ceres has been reported from images of the Dawn Framing Camera. This finding is supported by ground-based observations revealing diurnal albedo changes at Occators longitude. In the present work, we further investigate the previously reported haze phenomenon in more detail using additional Framing Camera images. We demonstrate that the light scattering behavior at the central floor of Occator is different compared to a typical cerean surface and is likely inconsistent with a pure solid surface scatterer. The identified deviation is best explained by an additional component to the scattered light of the surface, i.e., a haze layer. Our results support the water vapor detection by Herschel observations though the existence of a tenuous cerean exosphere is not yet confirmed.
We mapped all boulders larger than 105 m on the surface of dwarf planet Ceres using images of the Dawn framing camera acquired in the Low Altitude Mapping Orbit (LAMO). We find that boulders on Ceres are more numerous towards high latitudes and have
Variations and spatial distributions of bright and dark material on dwarf planet Ceres play a key role in understanding the processes that have led to its present surface composition. We define limits for bright and dark material in order to distingu
In order to investigate the causes of different spectral slope in ccps, different grain-sizes of Ceres analogue mixtures were produced, heated to remove absorption of atmospheric water, and spectrally analyzed. First, the end-members which compose th
We study the spectrophotometric properties of dwarf planet Ceres in the VIS-IR spectral range by means of hyper-spectral images acquired by the VIR imaging spectrometer on board the NASA Dawn mission. Disk-resolved observations with a phase angle wit
The largest moon of Neptune, Triton, possess a cold and hazy atmosphere. Since the discovery of near-surface haze layer during the Voyager fly in 1989, the haze formation mechanism has not been investigated in detail. Here, we provide the first haze